Equilibrium fluctuations for zero-range-exclusion processes

被引:2
作者
Uchiyama, K [1 ]
机构
[1] Tokyo Inst Technol, Dept Math, Meguro Ku, Tokyo 1528551, Japan
关键词
fluctuation fields; hydrodynamic scaling; non-gradient system; diffusion coefficient matrix; lattice gas;
D O I
10.1023/B:JOSS.0000028065.88090.af
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a Markovian particle system which is a kind of lattice gas on Z consisting of particles carrying energy and whose dynamics is a combination of those of an exclusion process (for particles) and a zero-range process (for energy). It has two conserved quantities, the number of particles and the total energy. The process is reversible relative to certain product probability measures, but of non-gradient type. It is proved that under hydrodynamic scaling the equilibrium fluctuation fields of two conserved quantities converge in law to an infinite dimensional Ornstein-Uhlenbeck process.
引用
收藏
页码:1423 / 1460
页数:38
相关论文
共 21 条
[1]  
Benois O, 2003, ANN I H POINCARE-PR, V39, P743, DOI [10.1016/S0246-0203(03)00016-5, 10.1016/S0246-0203(03)00016-5/FLA]
[2]   EQUILIBRIUM FLUCTUATIONS OF STOCHASTIC PARTICLE-SYSTEMS - THE ROLE OF CONSERVED QUANTITIES [J].
BROX, T ;
ROST, H .
ANNALS OF PROBABILITY, 1984, 12 (03) :742-759
[3]  
Chang C. J., 2001, ELECT TRANSFER CHE 2, V3, P409
[5]   FLUCTUATIONS OF ONE-DIMENSIONAL GINZBURG-LANDAU MODELS IN NONEQUILIBRIUM [J].
CHANG, CC ;
YAU, HT .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 145 (02) :209-234
[6]  
CHANG CC, 1995, IMA, V77, P41
[7]  
ETHIER S. N., 1985, Markov Processes: Characterization and Convergence
[8]  
Funaki T., 1995, NONLINEAR STOCHASTIC, V77, P1
[9]  
Holley R., 1978, PUBL RIMS KYOTO U, V14, P741
[10]   HYDRODYNAMICAL LIMIT FOR A NONGRADIENT SYSTEM - THE GENERALIZED SYMMETRICAL EXCLUSION PROCESS [J].
KIPNIS, C ;
LANDIM, C ;
OLLA, S .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (11) :1475-1545