Circular analysis in systems neuroscience: the dangers of double dipping

被引:2055
作者
Kriegeskorte, Nikolaus [1 ]
Simmons, W. Kyle [1 ]
Bellgowan, Patrick S. F. [1 ]
Baker, Chris I. [1 ]
机构
[1] US Natl Inst Mental Hlth, Lab Brain & Cognit, Bethesda, MD USA
关键词
D O I
10.1038/nn.2303
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A neuroscientific experiment typically generates a large amount of data, of which only a small fraction is analyzed in detail and presented in a publication. However, selection among noisy measurements can render circular an otherwise appropriate analysis and invalidate results. Here we argue that systems neuroscience needs to adjust some widespread practices to avoid the circularity that can arise from selection. In particular, 'double dipping', the use of the same dataset for selection and selective analysis, will give distorted descriptive statistics and invalid statistical inference whenever the results statistics are not inherently independent of the selection criteria under the null hypothesis. To demonstrate the problem, we apply widely used analyses to noise data known to not contain the experimental effects in question. Spurious effects can appear in the context of both univariate activation analysis and multivariate pattern-information analysis. We suggest a policy for avoiding circularity.
引用
收藏
页码:535 / 540
页数:6
相关论文
共 24 条
[1]  
[Anonymous], 2001, Pattern Classification
[2]   Does the fusiform face area contain subregions highly selective for nonfaces? [J].
Baker, Chris I. ;
Hutchison, Tyler L. ;
Kanwisher, Nancy .
NATURE NEUROSCIENCE, 2007, 10 (01) :3-4
[3]  
BAKER CI, 2007, SOC NEUR ABSTR
[4]   Comment: Microarrays, empirical Bayes and the two-groups model [J].
Benjamini, Yoav ;
Cai, T. Tony ;
Morris, Carl N. ;
Rice, Kenneth ;
Spiegelhalter, David ;
Efron, Bradley .
STATISTICAL SCIENCE, 2008, 23 (01) :23-47
[5]  
BISHOP C. M, 2006, Pattern Recognition and Machine Learning. Information Science and Statistics, DOI [10.1007/978-0-387-45528-0, DOI 10.1007/978-0-387-45528-0]
[6]   Functional magnetic resonance imaging (fMRI) "brain reading": detecting and classifying distributed patterns of fMRI activity in human visual cortex [J].
Cox, DD ;
Savoy, RL .
NEUROIMAGE, 2003, 19 (02) :261-270
[7]  
Friston K., 1994, Human Brain Mapping, V1, P153, DOI DOI 10.1002/HBM.460010207
[8]   A critique of functional localisers [J].
Friston, K. J. ;
Rotshtein, P. ;
Geng, J. J. ;
Sterzer, P. ;
Henson, R. N. .
NEUROIMAGE, 2006, 30 (04) :1077-1087
[9]   Thresholding of statistical maps in functional neuroimaging using the false discovery rate [J].
Genovese, CR ;
Lazar, NA ;
Nichols, T .
NEUROIMAGE, 2002, 15 (04) :870-878
[10]   Distributed and overlapping representations of faces and objects in ventral temporal cortex [J].
Haxby, JV ;
Gobbini, MI ;
Furey, ML ;
Ishai, A ;
Schouten, JL ;
Pietrini, P .
SCIENCE, 2001, 293 (5539) :2425-2430