Multiwalled carbon nanotube/polybenzoxazine nanocomposites: Preparation, characterization and properties

被引:111
作者
Chen, Qiao
Xu, Riwei
Yu, Dingsheng [1 ]
机构
[1] Beijing Univ Chem Technol, Key Lab Beijing City Preparat & Proc Novel Polyme, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Minist Educ, Key Lab Nanomat, Beijing 100029, Peoples R China
[3] Zhejiang Univ Technol, Coll Chem Engn & Mat, Hangzhou 310014, Peoples R China
基金
中国国家自然科学基金;
关键词
polybenzoxazine; multiwalled carbon nanotubes; nanocomposite;
D O I
10.1016/j.polymer.2006.08.058
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A novel nanocomposite composed of polybenzoxazine (PBZ) and multiwalled carbon nanotubes (MWNT) was prepared successfully. The surface modification of MWNT, including nitric acid modification followed by toluene-2,4-diisocyanate (TDI) treatment, introduced hydroxyl, carboxyl, and isocyanate groups on the MWNT surface. The surface carboxyl groups catalyzed the ring-opening reaction of benzoxazine and thus decreased the curing temperature of the system. The isocyanate groups reacted with the phenolic hydroxyl groups generated by the ring opening of benzoxazine resulting in the significant improvement of the adhesion between PBZ and MWNT. Dynamic mechanical analyses indicated the increase of storage modulus as well as T, by the addition of MWNT into PBZ. A well dispersed modified-MWNT on nanoscale level inside PBZ matrix was observed by TEM and SEM. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7711 / 7719
页数:9
相关论文
共 76 条
[1]   Synthesis and characterization of novel benzoxazine monomers containing allyl groups and their high performance thermosets [J].
Agag, T ;
Takeichi, T .
MACROMOLECULES, 2003, 36 (16) :6010-6017
[2]   Polybenzoxazine-montmorillonite hybrid nanocomposites: synthesis and characterization [J].
Agag, T ;
Takeichi, T .
POLYMER, 2000, 41 (19) :7083-7090
[3]   Novel benzoxazine monomers containing p-phenyl propargyl ether:: Polymerization of monomers and properties of polybenzoxazines [J].
Agag, T ;
Takeichi, T .
MACROMOLECULES, 2001, 34 (21) :7257-7263
[4]   Quantitative equivalence between polymer nanocomposites and thin polymer films [J].
Bansal, A ;
Yang, HC ;
Li, CZ ;
Cho, KW ;
Benicewicz, BC ;
Kumar, SK ;
Schadler, LS .
NATURE MATERIALS, 2005, 4 (09) :693-698
[5]   Carbon nanotube composites for thermal management [J].
Biercuk, MJ ;
Llaguno, MC ;
Radosavljevic, M ;
Hyun, JK ;
Johnson, AT ;
Fischer, JE .
APPLIED PHYSICS LETTERS, 2002, 80 (15) :2767-2769
[6]   Investigation of tribological properties of polyimide/carbon nanotube nanocomposites [J].
Cai, H ;
Yan, FY ;
Xue, QJ .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 364 (1-2) :94-100
[7]  
CHAPELLE ML, 1999, SYNTHETIC MET, V103, P2510
[8]   Solution properties of single-walled carbon nanotubes [J].
Chen, J ;
Hamon, MA ;
Hu, H ;
Chen, YS ;
Rao, AM ;
Eklund, PC ;
Haddon, RC .
SCIENCE, 1998, 282 (5386) :95-98
[9]   Elastic properties of single-walled carbon nanotubes in compression [J].
Cornwell, CF ;
Wille, LT .
SOLID STATE COMMUNICATIONS, 1997, 101 (08) :555-558
[10]  
DUNKERS J, 1996, 54 ANN TECHN C IND I