Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado

被引:605
作者
Mosier, Arvin R.
Halvorson, Ardell D.
Reule, Curtis A.
Liu, Xuejun J.
机构
[1] Univ Florida, Agr & Biol Engn Dept, Gainesville, FL 32611 USA
[2] USDA ARS, Ft Collins, CO USA
[3] China Agr Univ, Coll Resources & Environm Sci, Beijing, Peoples R China
关键词
D O I
10.2134/jeq2005.0232
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The impact of management on global warming potential (GWP), crop production, and greenhouse gas intensity (GHGI) in irrigated agriculture is not well documented. A no-fill (NT) cropping systems study initiated in 1999 to evaluate soil organic carbon (SOC) sequestration potential in irrigated agriculture was used in this study to make trace gas flux measurements for 3 yr to facilitate a complete greenhouse gas accounting of GWP and GHGI. Fluxes of CO2, CH4, and N2O were measured using static, vented chambers, one to three times per week, year round, from April 2002 through October 2004 within conventional-till continuous corn (CT-CC) and NT continuous corn (NT-CC) plots and in NT corn-soybean rotation (NT-CB) plots. Nitrogen fertilizer rates ranged from 0 to 224 kg N ha(-1). Methane fluxes were small and did not differ between tillage systems. Nitrous oxide fluxes increased linearly with increasing N fertilizer rate each year, but emission rates varied with years. Carbon dioxide efflux was higher in CT compared to NT in 2002 but was not different by tillage in 2003 or 2004. Based on soil respiration and residue C inputs, NT soils were net sinks of GWP when adequate fertilizer was added to maintain crop production. The CT soils were smaller net sinks for GWP than NT soils. The determinant for the net GWP relationship was a balance between soil respiration and N2O emissions. Based on soil C sequestration, only NT soils were net sinks for GWP. Both estimates of GWP and GHGI indicate that when appropriate crop production levels are achieved, net CO2 emissions are reduced. The results suggest that economic viability and environmental conservation can be achieved by minimizing tillage and utilizing appropriate levels of fertilizer.
引用
收藏
页码:1584 / 1598
页数:15
相关论文
共 47 条
[1]   Effects of soil temperature and moisture on soil respiration in barley and fallow plots [J].
Akinremi, OO ;
McGinn, SM ;
McLean, HDJ .
CANADIAN JOURNAL OF SOIL SCIENCE, 1999, 79 (01) :5-13
[2]  
*AN SOFTW, 2005, STAT 8 0
[3]   CARBON-DIOXIDE EVOLUTION FROM 2 TEMPERATE, DECIDUOUS WOODLAND SOILS [J].
ANDERSON, JM .
JOURNAL OF APPLIED ECOLOGY, 1973, 10 (02) :361-378
[4]  
[Anonymous], 2004, 141 COUNC AGR SCI TE
[5]  
[Anonymous], ASA SPECIAL PUBLICAT
[6]   AGGREGATE-PROTECTED AND UNPROTECTED ORGANIC-MATTER POOLS IN CONVENTIONAL-TILLAGE AND NO-TILLAGE SOILS [J].
BEARE, MH ;
CABRERA, ML ;
HENDRIX, PF ;
COLEMAN, DC .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1994, 58 (03) :787-795
[7]   COMPARATIVE ANALYSES OF CARBON DYNAMICS IN NATIVE AND CULTIVATED ECOSYSTEMS [J].
BUYANOVSKY, GA ;
KUCERA, CL ;
WAGNER, GH .
ECOLOGY, 1987, 68 (06) :2023-2031
[8]   Methane oxidation and production activity in soils from natural and agricultural ecosystems [J].
Chan, ASK ;
Parkin, TB .
JOURNAL OF ENVIRONMENTAL QUALITY, 2001, 30 (06) :1896-1903
[9]  
CHRISTENSEN BT, 1996, ADV SOIL SCI, V8, P97
[10]   Global estimates of potential mitigation of greenhouse gas emissions by agriculture [J].
Cole, CV ;
Duxbury, J ;
Freney, J ;
Heinemeyer, O ;
Minami, K ;
Mosier, A ;
Paustian, K ;
Rosenberg, N ;
Sampson, N ;
Sauerbeck, D ;
Zhao, Q .
NUTRIENT CYCLING IN AGROECOSYSTEMS, 1997, 49 (1-3) :221-228