Solving the Einstein constraint equations on multi-block triangulations using finite element methods

被引:4
作者
Korobkin, Oleg [1 ,2 ]
Aksoylu, Burak [2 ,3 ]
Holst, Michael [4 ]
Pazos, Enrique [1 ,2 ]
Tiglio, Manuel [5 ,6 ]
机构
[1] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Ctr Comp & Technol, Baton Rouge, LA 70803 USA
[3] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[4] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[5] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[6] Univ Maryland, Ctr Sci Comp & Math Modeling, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
MEAN-CURVATURE SOLUTIONS; NUMERICAL RELATIVITY; SUPERCONVERGENCE; IMPLEMENTATION; GRADIENT; REFINEMENT; STABILITY;
D O I
10.1088/0264-9381/26/14/145007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In order to generate initial data for nonlinear relativistic simulations, one needs to solve the Einstein constraints, which can be cast into a coupled set of nonlinear elliptic equations. Here we present an approach for solving these equations on three-dimensional multi-block domains using finite element methods. We illustrate our approach on a simple example of Brill wave initial data, with the constraints reducing to a single linear elliptic equation for the conformal factor.. We use quadratic Lagrange elements on semi-structured simplicial meshes, obtained by triangulation of multi-block grids. In the case of uniform refinement the scheme is superconvergent at most mesh vertices, due to local symmetry of the finite element basis with respect to local spatial inversions. We show that in the superconvergent case subsequent unstructured mesh refinements do not improve the quality of our initial data. As proof of concept that this approach is feasible for generating multi-block initial data in three dimensions, after constructing the initial data we evolve them in time using a high-order finite-differencing multi-block approach and extract the gravitational waves from the numerical solution.
引用
收藏
页数:28
相关论文
共 79 条
[1]  
Adams R.A., 1987, Sobolev Spaces
[2]   An odyssey into local refinement and multilevel preconditioning III: Implementation and numerical experiments [J].
Aksoylu, B ;
Bond, S ;
Holst, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (02) :478-498
[3]   Optimality of multilevel preconditioners for local mesh refinement in three dimensions [J].
Aksoylu, Burak ;
Holst, Michael .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (03) :1005-1025
[4]   Gravitational collapse of gravitational waves in 3D numerical relativity -: art. no. 041501 [J].
Alcubierre, M ;
Allen, G ;
Brügmann, B ;
Lanfermann, G ;
Seidel, E ;
Suen, WM ;
Tobias, M .
PHYSICAL REVIEW D, 2000, 61 (04)
[5]  
Anderson E, 1999, LAPACK USERS GUIDE, DOI [10.1137/1.9780898719604, DOI 10.1137/1.9780898719604]
[6]  
[Anonymous], 2007, FINITE ELEMENTE
[7]  
[Anonymous], ANL966 MATH COMP SCI
[8]  
Arnowitt R., 1962, Gravitation: An Introduction to Current Research, P227
[9]  
Bank R. E., 2003, SIAM Review, V45, P291, DOI 10.1137/S003614450342061
[10]   ASYMPTOTIC ERROR EXPANSION AND RICHARDSON EXTRAPOLATION FOR LINEAR FINITE-ELEMENTS [J].
BLUM, H ;
LIN, Q ;
RANNACHER, R .
NUMERISCHE MATHEMATIK, 1986, 49 (01) :11-37