Scaling, spectra and zonal jets in beta-plane turbulence

被引:59
作者
Danilov, S [1 ]
Gurarie, D
机构
[1] Alfred Wegener Inst Polar & Marine Res, D-27515 Bremerhaven, Germany
[2] Russian Acad Sci, Inst Atmospher Phys, Moscow 109017, Russia
[3] Case Western Reserve Univ, Cleveland, OH 44106 USA
关键词
D O I
10.1063/1.1752928
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A beta-plane approximation of the two-dimensional quasigeostrophic model describes a single layer (barotropic) fluid subjected to a latitudinally varying Coriolis parameter or topography. Rhines (1975) initiated the study of beta-plane turbulence. He predicted the inverse energy cascade into predominantly zonal modes, hence an array of eastward-westward jets, and estimated the jet number (celebrated Rhines scale). He also proposed a k(-5) scaling law of zonal energy spectra. Our paper re-examines scaling, spectra, and zonal structure of beta-plane turbulence, based on theoretical predictions and numeric experiments. We show that the inverse cascade gives rise to strong organized zonal jets that evolve a peculiar frontal-band ("saw-tooth") vorticity profile. Such structure affects all spectral properties of the system, by creating organized sequences of spectral peaks, and thus confounds any putative "scaling behavior." The frontal-band structure appears consistently in all stochastically forced beta-plane flows, independent of dissipation and/or other details. But the resulting turbulent quasiequilibrium is not unique, its gross parameters (jets number, mean vorticity gradient) retain memory of the initial state and/or history. (C) 2004 American Institute of Physics.
引用
收藏
页码:2592 / 2603
页数:12
相关论文
共 34 条
[1]   INVERSE ENERGY CASCADE IN STATIONARY 2-DIMENSIONAL HOMOGENEOUS TURBULENCE [J].
BORUE, V .
PHYSICAL REVIEW LETTERS, 1994, 72 (10) :1475-1478
[2]   The effect of small-scale forcing on large-scale structures in two-dimensional flows [J].
Chekhlov, A ;
Orszag, SA ;
Sukoriansky, S ;
Galperin, B ;
Staroselsky, I .
PHYSICA D, 1996, 98 (2-4) :321-334
[3]   The emergence of jets and vortices in freely evolving, shallow-water turbulence on a sphere [J].
Cho, JYK ;
Polvani, LM .
PHYSICS OF FLUIDS, 1996, 8 (06) :1531-1552
[4]   Rhines scale and spectra of the β-plane turbulence with bottom drag -: art. no. 067301 [J].
Danilov, S ;
Gurarie, D .
PHYSICAL REVIEW E, 2002, 65 (06) :1-067301
[5]   Forced two-dimensional turbulence in spectral and physical space [J].
Danilov, S ;
Gurarie, D .
PHYSICAL REVIEW E, 2001, 63 (06) :1-061208
[6]  
Danilov S, 2001, PHYS REV E, V63, DOI 10.1103/PhysRevE.63.020203
[7]  
DANILOV S, 2002, 107 A WEG I POL MAR
[8]   Universal n-5 spectrum of zonal flows on giant planets [J].
Galperin, B ;
Sukoriansky, S ;
Huang, HP .
PHYSICS OF FLUIDS, 2001, 13 (06) :1545-1548
[9]   STOCHASTIC CLOSURE FOR NONLINEAR ROSSBY WAVES [J].
HOLLOWAY, G ;
HENDERSHOTT, MC .
JOURNAL OF FLUID MECHANICS, 1977, 82 (OCT14) :747-765
[10]  
Huang HP, 1998, J ATMOS SCI, V55, P611, DOI 10.1175/1520-0469(1998)055<0611:TDTAPZ>2.0.CO