Aip1 and cofilin promote rapid turnover of yeast actin patches and cables: A coordinated mechanism for severing and capping filaments

被引:91
作者
Okada, Kyoko
Ravi, Harini
Smith, Ellen M.
Goode, Bruce L. [1 ]
机构
[1] Brandeis Univ, Dept Biol, Waltham, MA 02454 USA
[2] Brandeis Univ, Rosenstiel Basic Med Sci, Waltham, MA 02454 USA
关键词
D O I
10.1091/mbc.E06-02-0135
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Rapid turnover of actin structures is required for dynamic remodeling of the cytoskeleton and cell morphogenesis, but the mechanisms driving actin disassembly are poorly defined. Cofilin plays a central role in promoting actin turnover by severing/depolymerizing filaments. Here, we analyze the in vivo function of a ubiquitous actin-interacting protein, Aip1, suggested to work with cofilin. We provide the first demonstration that Aip1 promotes actin turnover in living cells. Further, we reveal an unanticipated role for Aip1 and cofilin in promoting rapid turnover of yeast actin cables, dynamic structures that are decorated and stabilized by tropomyosin. Through systematic mutagenesis of Aip1 surfaces, we identify two well-separated F-actin-binding sites, one of which contributes to actin filament binding and disassembly specifically in the presence of cofilin. We also observe a close correlation between mutations disrupting capping of severed filaments in vitro and reducing rates of actin turnover in vivo. We propose a model for balanced regulation of actin cable turnover, in which Aip1 and cofilin function together to "prune" tropomyosin-decorated cables along their lengths. Consistent with this model, deletion of AIP1 rescues the temperature-sensitive growth and loss of actin cable defects of tpm1 Delta mutants.
引用
收藏
页码:2855 / 2868
页数:14
相关论文
共 53 条
[1]   Xenopus laevis actin-depolymerizing factor cofilin: A phosphorylation-regulated protein essential for development [J].
Abe, H ;
Obinata, T ;
Minamide, LS ;
Bamburg, JR .
JOURNAL OF CELL BIOLOGY, 1996, 132 (05) :871-885
[2]   UNEXPECTED COMBINATIONS OF NULL MUTATIONS IN GENES ENCODING THE ACTIN CYTOSKELETON ARE LETHAL IN YEAST [J].
ADAMS, AEM ;
COOPER, JA ;
DRUBIN, DG .
MOLECULAR BIOLOGY OF THE CELL, 1993, 4 (05) :459-468
[3]   Hyperosmotic stress-induced reorganization of actin bundles in Dictyostelium cells over-expressing cofilin [J].
Aizawa, H ;
Katadae, M ;
Maruya, M ;
Sameshima, M ;
Murakami-Murofushi, K ;
Yahara, I .
GENES TO CELLS, 1999, 4 (06) :311-324
[4]   DISRUPTION OF THE ACTIN CYTOSKELETON IN YEAST CAPPING PROTEIN MUTANTS [J].
AMATRUDA, JF ;
CANNON, JF ;
TATCHELL, K ;
HUG, C ;
COOPER, JA .
NATURE, 1990, 344 (6264) :352-354
[5]   DEFINING PROTEIN INTERACTIONS WITH YEAST ACTIN IN-VIVO [J].
AMBERG, DC ;
BASART, E ;
BOTSTEIN, D .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (01) :28-35
[6]   Isolation and characterization of a novel actin filament-binding protein from Saccharomyces cerevisiae [J].
Asakura, T ;
Sasaki, T ;
Nagano, F ;
Satoh, A ;
Obaishi, H ;
Nishioka, H ;
Imamura, H ;
Hotta, K ;
Tanaka, K ;
Nakanishi, H ;
Takai, Y .
ONCOGENE, 1998, 16 (01) :121-130
[7]   High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A [J].
Ayscough, KR ;
Stryker, J ;
Pokala, N ;
Sanders, M ;
Crews, P ;
Drubin, DG .
JOURNAL OF CELL BIOLOGY, 1997, 137 (02) :399-416
[8]   Coordinated regulation of actin filament turnover by a high-molecular-weight Srv2/CAP complex, cofilin, profilin, and Aip1 [J].
Balcer, HI ;
Goodman, AL ;
Rodal, AA ;
Smith, E ;
Kugler, J ;
Heuser, JE ;
Goode, BL .
CURRENT BIOLOGY, 2003, 13 (24) :2159-2169
[9]   Proteins of the ADF/cofilin family: Essential regulators of actin dynamics [J].
Bamburg, JR .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1999, 15 :185-230
[10]   Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: Implication in actin-based motility [J].
Carlier, MF ;
Laurent, V ;
Santolini, J ;
Melki, R ;
Didry, D ;
Xia, GX ;
Hong, Y ;
Chua, NH ;
Pantaloni, D .
JOURNAL OF CELL BIOLOGY, 1997, 136 (06) :1307-1322