Non-vesicular and vesicular lipid trafficking involving plastids

被引:55
作者
Benning, C [1 ]
Xu, CC [1 ]
Awai, K [1 ]
机构
[1] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48823 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.pbi.2006.03.012
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In plants, newly synthesized fatty acids are either directly incorporated into glycerolipids in the plastid or exported and assembled into lipids at the endoplasmic reticulum (ER). ER-derived glycerolipids serve as building blocks for extraplastidic membranes. Alternatively, they can return to the plastid where their diacylglycerol backbone is incorporated into the glycerolipids of the photosynthetic membranes, the thylakoids. Thylakoid lipids are assembled at the plastid envelope membranes and are transferred to the thylakoids. Under phosphate-limited growth conditions, galactolipids are exported from the outer plastid envelope membranes to extraplastidic membranes. Proteins, such as TRIGALACTOSYLDIACYLGLYCEROLI (TGD1) or VESICLE-INDUCING PROTEIN IN PLASTIDS1 (VIPP1), which are involved in different aspects of plastid lipid trafficking phenomena have recently been identified and mechanistic models that are based on the analysis of these components have begun to emerge.
引用
收藏
页码:241 / 247
页数:7
相关论文
共 49 条
[1]   The plasma membrane and the tonoplast as major targets for phospholipid- to-glycolipid replacement and stimulation of phospholipases in the plasma membrane [J].
Andersson, MX ;
Larsson, KE ;
Tjellström, H ;
Liljenberg, C ;
Sandelius, AS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (30) :27578-27586
[2]   A chloroplast-localized vesicular transport system: a bio-informatics approach [J].
Andersson, MX ;
Sandelius, AS .
BMC GENOMICS, 2004, 5 (1)
[3]   The involvement of cytosolic lipases in converting phosphatidyl choline to substrate for galactolipid synthesis in the chloroplast envelope [J].
Andersson, MX ;
Kjellberg, JM ;
Sandelius, AS .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2004, 1684 (1-3) :46-53
[4]   Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol [J].
Andersson, MX ;
Stridh, MH ;
Larsson, KE ;
Lijenberg, C ;
Sandelius, AS .
FEBS LETTERS, 2003, 537 (1-3) :128-132
[5]   Complex formation of Vipp1 depends on its α-helical PspA-like domain [J].
Aseeva, E ;
Ossenbühl, F ;
Eichacker, LA ;
Wanner, G ;
Soll, J ;
Vothknecht, UC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (34) :35535-35541
[6]   Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants [J].
Benning, C ;
Ohta, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (04) :2397-2400
[7]   The mechanisms of vesicle budding and fusion [J].
Bonifacino, JS ;
Glick, BS .
CELL, 2004, 116 (02) :153-166
[8]   FLUXES THROUGH THE PROKARYOTIC AND EUKARYOTIC PATHWAYS OF LIPID-SYNTHESIS IN THE 16-3 PLANT ARABIDOPSIS-THALIANA [J].
BROWSE, J ;
WARWICK, N ;
SOMERVILLE, CR ;
SLACK, CR .
BIOCHEMICAL JOURNAL, 1986, 235 (01) :25-31
[9]   GLYCEROLIPID SYNTHESIS - BIOCHEMISTRY AND REGULATION [J].
BROWSE, J ;
SOMERVILLE, C .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1991, 42 :467-506
[10]   Solution structure of a tobacco lipid transfer protein exhibiting new biophysical and biological features [J].
Da Silva, P ;
Landon, C ;
Industri, B ;
Marais, A ;
Marion, D ;
Ponchet, M ;
Vovelle, F .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2005, 59 (02) :356-367