A new microscopic insight into membrane penetration and reorganization by PETIM dendrimers

被引:67
作者
Bhattacharya, R. [1 ]
Kanchi, Subbarao [1 ,2 ]
Roobala, C. [1 ]
Lakshminarayanan, A. [3 ]
Seeck, Oliver H. [4 ]
Maiti, Prabal K. [1 ]
Ayappa, K. G. [2 ]
Jayaraman, N. [3 ]
Basu, J. K. [1 ]
机构
[1] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, Dept Chem Engn, Bangalore 560012, Karnataka, India
[3] Indian Inst Sci, Dept Organ Chem, Bangalore 560012, Karnataka, India
[4] DESY, D-22607 Hamburg, Germany
关键词
SUPPORTED LIPID-BILAYERS; ETHER IMINE) DENDRIMER; POLY(AMIDOAMINE) DENDRIMERS; MOLECULAR-DYNAMICS; PAMAM DENDRIMERS; PORE FORMATION; DRUG-DELIVERY; GENE DELIVERY; FORCE-FIELDS; MODEL;
D O I
10.1039/c4sm01112k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dendrimers are highly branched polymeric nanoparticles whose structure and topology, largely, have determined their efficacy in a wide range of studies performed so far. An area of immense interest is their potential as drug and gene delivery vectors. Realizing this potential, depending on the nature of cell surface-dendrimer interactions, here we report controlled model membrane penetration and reorganization, using a model supported lipid bilayer and poly(ether imine) (PETIM) dendrimers of two generations. By systematically varying the areal density of the lipid bilayers, we provide a microscopic insight, through a combination of high resolution scattering, atomic force microscopy and atomistic molecular dynamics simulations, into the mechanism of PETIM dendrimer membrane penetration, pore formation and membrane re-organization induced by such interactions. Our work represents the first systematic observation of a regular barrel-like membrane spanning pore formation by dendrimers, tunable through lipid bilayer packing, without membrane disruption.
引用
收藏
页码:7577 / 7587
页数:11
相关论文
共 66 条
[1]   On the Ability of PAMAM Dendrimers and Dendrimer/DNA Aggregates To Penetrate POPC Model Biomembranes [J].
Ainalem, Marie-Louise ;
Campbell, Richard A. ;
Khalid, Syma ;
Gillams, Richard J. ;
Rennie, Adrian R. ;
Nylander, Tommy .
JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (21) :7229-7244
[2]   Unraveling Dendrimer Translocation Across Cell Membrane Mimics [J].
Akesson, Anna ;
Lind, Tania K. ;
Barker, Robert ;
Hughes, Arwel ;
Cardenas, Marite .
LANGMUIR, 2012, 28 (36) :13025-13033
[3]   The effect of PAMAM G6 dendrimers on the structure of lipid vesicles [J].
Akesson, Anna ;
Bendtsen, Kristian Moss ;
Beherens, Manja A. ;
Pedersen, Jan Skov ;
Alfredsson, Viveka ;
Gomez, Marite Cardenas .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (38) :12267-12272
[4]  
Akhtar S, 2006, GENE THER, V13, P739, DOI 10.1038/sj.gt.3302692
[5]  
ALSNIELSEN J, 1994, PHYS REP, V246, P252
[6]  
Ashley CE, 2011, NAT MATER, V10, P389, DOI [10.1038/NMAT2992, 10.1038/nmat2992]
[7]   Electron-transfer processes in dendrimers and their implication in biology, catalysis, sensing and nanotechnology [J].
Astruc, Didier .
NATURE CHEMISTRY, 2012, 4 (04) :255-267
[8]   Confinement enhances dispersion in nanoparticle-polymer blend films [J].
Chandran, Sivasurender ;
Begam, Nafisa ;
Padmanabhan, Venkat ;
Basu, J. K. .
NATURE COMMUNICATIONS, 2014, 5
[9]   Variation in glass transition temperature of polymer nanocomposite films driven by morphological transitions [J].
Chandran, Sivasurender ;
Basu, J. K. ;
Mukhopadhyay, M. K. .
JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (01)
[10]   Substrate suppression of thermal roughness in stacked supported bilayers [J].
DeCaro, Curt M. ;
Berry, Justin D. ;
Lurio, Laurence B. ;
Ma, Yicong ;
Chen, Gang ;
Sinha, Sunil ;
Tayebi, Lobat ;
Parikh, Atul N. ;
Jiang, Zhang ;
Sandy, Alec R. .
PHYSICAL REVIEW E, 2011, 84 (04)