Equilibrium shapes of flat knots

被引:100
作者
Metzler, R [1 ]
Hanke, A
Dommersnes, PG
Kantor, Y
Kardar, M
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Phys & Astron, IL-69978 Tel Aviv, Israel
[3] Univ Calif Santa Barbara, Inst Theoret Phys, Santa Barbara, CA 93106 USA
关键词
D O I
10.1103/PhysRevLett.88.188101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the equilibrium shapes of prime and composite knots confined to two dimensions. Using scaling arguments we show that, due to self-avoiding effects, the topological details of prime knots are localized on a small portion of the larger ring polymer. Within this region, the original knot configuration can assume a hierarchy of contracted shapes, the dominating one given by just one small loop. This hierarchy is investigated in detail for the flat trefoil knot, and corroborated by Monte Carlo simulations.
引用
收藏
页码:4 / 188101
页数:4
相关论文
共 33 条
[1]  
Alberts B., 1994, MOL BIOL CELL
[2]   Tying a molecular knot with optical tweezers [J].
Arai, Y ;
Yasuda, R ;
Akashi, K ;
Harada, Y ;
Miyata, H ;
Kinosita, K ;
Itoh, H .
NATURE, 1999, 399 (6735) :446-448
[3]  
Arnold V. I., 1994, Advances in Soviet Mathematics, V21, P33
[4]  
Arnold V. I., 1994, University Lecture Series, V5
[5]   ELASTICITY OF ENTANGLED NETWORKS [J].
BALL, RC ;
DOI, M ;
EDWARDS, SF ;
WARNER, M .
POLYMER, 1981, 22 (08) :1010-1018
[6]   Knots and random walks in vibrated granular chains [J].
Ben-Naim, E ;
Daya, ZA ;
Vorobieff, P ;
Ecke, RE .
PHYSICAL REVIEW LETTERS, 2001, 86 (08) :1414-1417
[7]  
de Gennes P.G., 1979, SCALING CONCEPTS POL
[8]  
Delbruck M., 1962, PROCEEDING S APPL MA, V14, P55, DOI DOI 10.1090/PSAPM/014
[9]   Predicting optimal lengths of random knots [J].
Dobay, A ;
Sottas, PE ;
Dubochet, J ;
Stasiak, A .
LETTERS IN MATHEMATICAL PHYSICS, 2001, 55 (03) :239-247
[10]  
DOI M, 1978, J CHEM SOC FARAD T 2, V74, P1802, DOI 10.1039/f29787401802