Dynamics of a massive piston in an ideal gas: Oscillatory motion and approach to equilibrium

被引:26
作者
Chernov, N
Lebowitz, JL
机构
[1] Univ Alabama, Dept Math, Birmingham, AL 35294 USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
piston; ideal gas; mechanical equilibrium; termodynamical equilibrium; oscillations;
D O I
10.1023/A:1020450228657
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study numerically and theoretically ( on a heuristic level) the time evolution of a gas confined to a cube of size L-3 divided into two parts by a piston with mass M-L similar to L-2 which can only move in the x-direction. Starting with a uniform ' ' double- peaked' ' (non Maxwellian) distribution of the gas and a stationary piston, we find that (a) after an initial quiescent period the system becomes unstable and the piston performs a damped oscillatory motion, and (b) there is a thermalization of the system leading to a Maxwellian distribution of the gas velocities. The time of the onset of the instability appears to grow like L log L while the relaxation time to the Maxwellian grows like L log L.
引用
收藏
页码:507 / 527
页数:21
相关论文
共 19 条
[1]  
CAGLIOTI E, UNPUB
[2]   Entropy, Lyapunov exponents, and mean free path for billiards [J].
Chernov, N .
JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (1-2) :1-29
[3]  
CORNFELD IP, 1982, FUNDAMENTAL PRINCIPL, V245
[4]   THE GENERALIZED H-THEOREM IN THE HILBERT THEORY [J].
DELALE, CF .
JOURNAL OF CHEMICAL PHYSICS, 1986, 84 (02) :971-975
[5]   A MECHANICAL MODEL OF BROWNIAN-MOTION [J].
DURR, D ;
GOLDSTEIN, S ;
LEBOWITZ, JL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 78 (04) :507-530
[6]   On the adiabatic properties of a stochastic adiabatic wall: Evolution, stationary non-equilibrium, and equilibrium states [J].
Gruber, C ;
Frachebourg, L .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 272 (3-4) :392-428
[7]   Stationary motion of the adiabatic piston [J].
Gruber, C ;
Piasecki, J .
PHYSICA A, 1999, 268 (3-4) :412-423
[8]  
Gruber C., 1999, European Journal of Physics, V20, P259, DOI 10.1088/0143-0807/20/4/303
[9]  
GRUBER C, UNPUB DETERMINISTIC
[10]   MOTION OF A HEAVY PARTICLE IN AN INFINITE ONE DIMENSIONAL GAS OF HARD SPHERES [J].
HOLLEY, R .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1971, 17 (03) :181-&