EGL-36 Shaw channels regulate C-elegans egg-laying muscle activity

被引:28
作者
Elkes, DA
Cardozo, DL
Madison, J
Kaplan, JM
机构
[1] Department of Molecular Biology, Massachusetts General Hospital, Boston
[2] Dept. of Molecular and Cell Biology, 142 Life Sciences Addition, University of California, Berkeley
关键词
D O I
10.1016/S0896-6273(00)80356-6
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The C. elegans egl-36 gene encodes a Shaw-type potassium channel that regulates egg-laying behavior. Gain of function [egl-36(gf)] and dominant negative [egl-36(dn)] mutations in egl-36 cause reciprocal defects in egg laying. An egl-36::gfp reporter is expressed in the egg-laying muscles and in a few other tissues. Expression of an egl-36(gf) cDNA in the egg-laying muscles causes behavioral defects similar to those observed in egl-36(gf) mutants. Gain of function EGL-36 subunits form channels that are active at more negative potentials than wild-type channels. The egl-36(gf) alleles correspond to missense mutations in an amino terminal subunit assembly domain (E138K) and in the S6 transmembrane domain (P435S), neither of which were previously implicated in the voltage dependence of channel activation. Altogether, these results suggest that EGL-36 channels regulate the excitability of the egg-laying muscles.
引用
收藏
页码:165 / 174
页数:10
相关论文
共 41 条
[1]   A COMPONENT OF CALCIUM-ACTIVATED POTASSIUM CHANNELS ENCODED BY THE DROSOPHILA-SLO LOCUS [J].
ATKINSON, NS ;
ROBERTSON, GA ;
GANETZKY, B .
SCIENCE, 1991, 253 (5019) :551-555
[2]   PHARYNGEAL PUMPING CONTINUES AFTER LASER KILLING OF THE PHARYNGEAL NERVOUS-SYSTEM OF C-ELEGANS [J].
AVERY, L ;
HORVITZ, R .
NEURON, 1989, 3 (04) :473-485
[3]  
BARGMANN C, 1997, IN PRESS ANN REV NEU, V21
[4]   GENETIC AND CELLULAR ANALYSIS OF BEHAVIOR IN C-ELEGANS [J].
BARGMANN, CI .
ANNUAL REVIEW OF NEUROSCIENCE, 1993, 16 :47-71
[5]  
Bargmann CI, 1995, METHOD CELL BIOL, V48, P225
[6]   A FAMILY OF PUTATIVE POTASSIUM CHANNEL GENES IN DROSOPHILA [J].
BUTLER, A ;
WEI, A ;
BAKER, K ;
SALKOFF, L .
SCIENCE, 1989, 243 (4893) :943-947
[7]   TETRAETHYLAMMONIUM BLOCKADE DISTINGUISHES 2 INACTIVATION MECHANISMS IN VOLTAGE-ACTIVATED K+ CHANNELS [J].
CHOI, KL ;
ALDRICH, RW ;
YELLEN, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (12) :5092-5095
[8]   HETEROPOLYMERIC POTASSIUM CHANNELS EXPRESSED IN XENOPUS OOCYTES FROM CLONED SUBUNITS [J].
CHRISTIE, MJ ;
NORTH, RA ;
OSBORNE, PB ;
DOUGLASS, J ;
ADELMAN, JP .
NEURON, 1990, 4 (03) :405-411
[9]   A MOLECULAR-BASIS FOR CARDIAC-ARRHYTHMIA - HERG MUTATIONS CAUSE LONG QT SYNDROME [J].
CURRAN, ME ;
SPLAWSKI, I ;
TIMOTHY, KW ;
VINCENT, GM ;
GREEN, ED ;
KEATING, MT .
CELL, 1995, 80 (05) :795-803
[10]  
Davis MW, 1995, J NEUROSCI, V15, P8408