Enhancement of Waste Activated Sludge Protein Conversion and Volatile Fatty Acids Accumulation during Waste Activated Sludge Anaerobic Fermentation by Carbohydrate Substrate Addition: The Effect of pH

被引:417
作者
Feng, Leiyu [1 ]
Chen, Yinguang [1 ]
Zheng, Xiong [1 ]
机构
[1] Tongji Univ, Sch Environm Sci & Engn, State Key Lab Pollut Control & Resources Reuse, Shanghai 200092, Peoples R China
关键词
BIOLOGICAL PHOSPHORUS REMOVAL; 16S RIBOSOMAL-RNA; SEQUENCE-ANALYSIS; ACIDIFICATION; HYDROLYSIS; PROPIONATE; BACTERIA; LACTATE; ACETATE; REACTOR;
D O I
10.1021/es8037142
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Volatile fatty acids (VFAs), the carbon source of biological nutrients removal, can be produced by waste activated sludge (WAS) anaerobic fermentation. However, because of high protein content and low carbon to nitrogen mass ratio (C/N) of WAS,the production of VFAs, especially propionic acid, a more preferred VFA than acetic acid for enhanced biological phosphorus removal (EBPR), is limited. After the addition of carbohydrate (rice was used as the model matter) to the WAS anaerobic fermentation system to balance the C/N ratio, the effect of pH on WAS protein conversion and VFAs production was investigated in this paper. Experimental results showed that the addition of carbohydrate matter caused a remarkable enhancement of WAS protein conversion and protease activity, and an apparent synergistic effect between WAS and carbohydrate matter was observed. The study of pH effect revealed that pH influenced not only the total VFAs production but the percentage of individual VFA. The maximal VFAs production (520.1 mg COD per gram of volatile suspended solids (VSS)) occurred at pH 8.0 and a fermentation time of 8 d, which was more than three times that at uncontrolled pH (150.2 mg COD/g VSS). The analysis of the composition of VFAs showed that propionic acid ranked first at pH 6.0-9.0 (around 50%) whereas acetic acid was the dominant product at other pHs investigated. Thus, the suitable conditions for propionic acid-enriched VFAs production were pH 8.0 and a time of 8 d. Further investigation showed that as there was more fermentation substrate consumption with lower biogas generation at pH 8.0, improved WAS production was observed. Also, the key enzymes. relevant to propionic acid formation exhibited the highest activities at pH 8.0, which resulted in the greatest propionic acid content in the fermentative VFAs. The 16S rRNA gene clone library demonstrated that Clostridia, beta-Proteobacteria, and Bacteroidetes were the dominant microbial community when the current anaerobic fermentation system was operated at pH 8.0. With the fermentative VFAs as the additional carbon source of municipal wastewater, the EBPR performance was significantly increased.
引用
收藏
页码:4373 / 4380
页数:8
相关论文
共 35 条
[1]   THE EFFECT OF ORGANIC-COMPOUNDS ON BIOLOGICAL PHOSPHORUS REMOVAL [J].
ABUGHARARAH, ZH ;
RANDALL, CW .
WATER SCIENCE AND TECHNOLOGY, 1991, 23 (4-6) :585-594
[2]   PURIFICATION + PROPERTIES OF ENZYMES INVOLVED IN PROPIONIC ACID FERMENTATION [J].
ALLEN, SHG ;
WOOD, HG ;
KELLERMEYER, RW ;
STJERNHOLM, RL .
JOURNAL OF BACTERIOLOGY, 1964, 87 (01) :171-&
[3]   LEVEL OF ENZYMES INVOLVED IN ACETATE, BUTYRATE, ACETONE AND BUTANOL FORMATION BY CLOSTRIDIUM-ACETOBUTYLICUM [J].
ANDERSCH, W ;
BAHL, H ;
GOTTSCHALK, G .
EUROPEAN JOURNAL OF APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1983, 18 (06) :327-332
[4]   The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid [J].
Chen, YG ;
Randall, AA ;
McCue, T .
WATER RESEARCH, 2004, 38 (01) :27-36
[5]   Hydrolysis and acidification of waste activated sludge at different pHs [J].
Chen, Yinguang ;
Jiang, Su ;
Yuan, Hongying ;
Zhou, Qi ;
Gu, Guowei .
WATER RESEARCH, 2007, 41 (03) :683-689
[6]  
DIEZGONZALEZ F, 1995, ARCH MICROBIOL, V164, P36, DOI 10.1007/BF02568732
[7]   Effects of alternative dietary substrates on competition between human colonic bacteria in an anaerobic fermentor system [J].
Duncan, SH ;
Scott, KP ;
Ramsay, AG ;
Harmsen, HJM ;
Welling, GW ;
Stewart, CS ;
Flint, HJ .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (02) :1136-1142
[8]   ANAEROBIC ACIDOGENESIS OF PRIMARY SLUDGE - THE ROLE OF SOLIDS RETENTION TIME [J].
ELEFSINIOTIS, P ;
OLDHAM, WK .
BIOTECHNOLOGY AND BIOENGINEERING, 1994, 44 (01) :7-13
[9]   Enzyme activities under anaerobic and aerobic conditions inactivated sludge sequencing batch reactor [J].
Goel, R ;
Mino, T ;
Satoh, H ;
Matsuo, T .
WATER RESEARCH, 1998, 32 (07) :2081-2088
[10]  
Grady Jr CPL, 2011, Biological Wastewater Treatment, VThird