Altered Anatomical Network in Early Blindness Revealed by Diffusion Tensor Tractography

被引:121
作者
Shu, Ni
Liu, Yong
Li, Jun
Li, Yonghui
Yu, Chunshui
Jiang, Tianzi
机构
[1] LIAMA Center for Computational Medicine, National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Beijing
[2] Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing
[3] State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing
来源
PLOS ONE | 2009年 / 4卷 / 09期
关键词
BRAIN STRUCTURAL NETWORKS; CROSS-MODAL PLASTICITY; PRIMARY VISUAL-CORTEX; SMALL-WORLD; FUNCTIONAL CONNECTIVITY; WHITE-MATTER; ACTIVATION PATTERNS; CORTICAL THICKNESS; POSTCENTRAL GYRUS; NEURAL SYSTEMS;
D O I
10.1371/journal.pone.0007228
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. Diffusion MRI studies have revealed the efficient small-world properties and modular structure of the anatomical network in normal subjects. However, no previous study has used diffusion MRI to reveal changes in the brain anatomical network in early blindness. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 17 early blind subjects and 17 age- and gender-matched sighted controls. We established the existence of structural connections between any pair of the 90 cortical and sub-cortical regions using deterministic tractography. Compared with controls, early blind subjects showed a decreased degree of connectivity, a reduced global efficiency, and an increased characteristic path length in their brain anatomical network, especially in the visual cortex. Moreover, we revealed some regions with motor or somatosensory function have increased connections with other brain regions in the early blind, which suggested experience-dependent compensatory plasticity. This study is the first to show alterations in the topological properties of the anatomical network in early blindness. From the results, we suggest that analyzing the brain's anatomical network obtained using diffusion MRI data provides new insights into the understanding of the brain's re-organization in the specific population with early visual deprivation.
引用
收藏
页数:13
相关论文
共 99 条
  • [1] A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs
    Achard, S
    Salvador, R
    Whitcher, B
    Suckling, J
    Bullmore, ET
    [J]. JOURNAL OF NEUROSCIENCE, 2006, 26 (01) : 63 - 72
  • [2] Efficiency and cost of economical brain functional networks
    Achard, Sophie
    Bullmore, Edward T.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (02) : 174 - 183
  • [3] Early 'visual' cortex activation correlates with superior verbal memory performance in the blind
    Amedi, A
    Raz, N
    Pianka, P
    Malach, R
    Zohary, E
    [J]. NATURE NEUROSCIENCE, 2003, 6 (07) : 758 - 766
  • [4] Amunts K, 1999, J COMP NEUROL, V412, P319, DOI 10.1002/(SICI)1096-9861(19990920)412:2<319::AID-CNE10>3.0.CO
  • [5] 2-7
  • [6] Basser PJ, 2000, MAGNET RESON MED, V44, P625, DOI 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO
  • [7] 2-O
  • [8] ESTIMATION OF THE EFFECTIVE SELF-DIFFUSION TENSOR FROM THE NMR SPIN-ECHO
    BASSER, PJ
    MATTIELLO, J
    LEBIHAN, D
    [J]. JOURNAL OF MAGNETIC RESONANCE SERIES B, 1994, 103 (03): : 247 - 254
  • [9] Small-world brain networks
    Bassett, Danielle Smith
    Bullmore, Edward T.
    [J]. NEUROSCIENTIST, 2006, 12 (06) : 512 - 523
  • [10] Adaptive reconfiguration of fractal small-world human brain functional networks
    Bassettt, Danielle S.
    Meyer-Lindenberg, Andreas
    Achard, Sophie
    Duke, Thomas
    Bullmore, Edward T.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (51) : 19518 - 19523