Certification of an optimal TSP tour through 85,900 cities

被引:96
作者
Applegate, David L.
Bixby, Robert E. [2 ]
Chvatal, Vasek [3 ]
Cook, William [1 ]
Espinoza, Daniel G. [4 ]
Goycoolea, Marcos [5 ]
Helsgaun, Keld [6 ]
机构
[1] Georgia Tech, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[2] Rice Univ, Grad Sch Management, Houston, TX 77251 USA
[3] Concordia Univ, Dept Comp Sci & Software Engn, Montreal, PQ, Canada
[4] Univ Chile, Dept Ingn Ind, Santiago, Chile
[5] Univ Adolfo Ibanez, Sch Business, Recreo, Chile
[6] Roskilde Univ, Dept Comp Sci, Roskilde, Denmark
关键词
Traveling salesman problem; Integer programming; Linear programming; INEQUALITIES; ALGORITHM;
D O I
10.1016/j.orl.2008.09.006
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We describe a computer code and data that together certify the optimality of a solution to the 85,900-city traveling salesman problem pla85900, the largest instance in the TSPLIB collection of challenge problems. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:11 / 15
页数:5
相关论文
共 20 条
[1]  
[Anonymous], 1971, Math Program, DOI DOI 10.1007/BF01584070
[2]   Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems [J].
Applegate, D ;
Bixby, R ;
Chvátal, V ;
Cook, W .
MATHEMATICAL PROGRAMMING, 2003, 97 (1-2) :91-153
[3]  
Applegate D., CONCORDE
[4]  
Applegate David L, 2006, TRAVELING SALESMAN P
[5]   SMALL TRAVELING SALESMAN POLYTOPES [J].
BOYD, SC ;
CUNNINGHAM, WH .
MATHEMATICS OF OPERATIONS RESEARCH, 1991, 16 (02) :259-271
[6]  
Chvatal V., 1973, Mathematical Programming, V5, P29, DOI 10.1007/BF01580109
[7]   SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN PROBLEM [J].
DANTZIG, G ;
FULKERSON, R ;
JOHNSON, S .
JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF AMERICA, 1954, 2 (04) :393-410
[8]   A NEW CLASS OF CUTTING PLANES FOR THE SYMMETRIC TRAVELING SALESMAN PROBLEM [J].
FLEISCHMANN, B .
MATHEMATICAL PROGRAMMING, 1988, 40 (03) :225-246
[9]   CLIQUE TREE INEQUALITIES AND THE SYMMETRICAL TRAVELING SALESMAN PROBLEM [J].
GROTSCHEL, M ;
PULLEYBLANK, WR .
MATHEMATICS OF OPERATIONS RESEARCH, 1986, 11 (04) :537-569
[10]   SYMMETRIC TRAVELING SALESMAN PROBLEM .1. INEQUALITIES [J].
GROTSCHEL, M ;
PADBERG, MW .
MATHEMATICAL PROGRAMMING, 1979, 16 (03) :265-280