Charge-density-wave instabilities driven by multiple umklapp scattering

被引:39
作者
Schmitteckert, P [1 ]
Werner, R [1 ]
机构
[1] Univ Karlsruhe, Inst Theorie Kondensierten Mat, D-76128 Karlsruhe, Germany
关键词
D O I
10.1103/PhysRevB.69.195115
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We show that the concept of umklapp-scattering driven instabilities in one-dimensional systems can be generalized to arbitrary multiple umklapp-scattering processes at commensurate fillings given that the system has sufficiently longer range interactions. To this end we study the fundamental model system, namely, interacting spinless fermions on a one-dimensional lattice, via a density-matrix renormalization-group approach. The instabilities are investigated via a method allowing to calculate the ground-state charge stiffness numerically exactly. The method can be used to determine other ground-state susceptibilities in general.
引用
收藏
页码:195115 / 1
页数:5
相关论文
共 25 条
[1]  
[Anonymous], 1969, ELEMENTS ADV QUANTUM
[2]   Modelling, identification and control of a denitrifying biofilter [J].
Bourrel, S ;
Dochain, D ;
Babary, JP ;
Queinnec, I .
JOURNAL OF PROCESS CONTROL, 2000, 10 (01) :73-91
[3]   Effects of long-range electronic interactions on a one-dimensional electron system [J].
Capponi, S ;
Poilblanc, D ;
Giamarchi, T .
PHYSICAL REVIEW B, 2000, 61 (20) :13410-13417
[4]   ANISOTROPIC LINEAR MAGNETIC CHAIN [J].
DESCLOIZ.J ;
GAUDIN, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1966, 7 (08) :1384-+
[5]   Quasi-one-dimensional spin-1/2 Heisenberg magnets in their ordered phase: Correlation functions [J].
Essler, FHL ;
Tsvelik, AM ;
Delfino, G .
PHYSICAL REVIEW B, 1997, 56 (17) :11001-11013
[6]   Spectral function of a quarter-filled one-dimensional charge density wave insulator [J].
Essler, FHL ;
Tsvelik, AM .
PHYSICAL REVIEW LETTERS, 2002, 88 (09) :964031-964034
[7]   GENERALIZED HARD-CORE FERMIONS IN ONE-DIMENSION - AN EXACTLY SOLVABLE LUTTINGER LIQUID [J].
GOMEZSANTOS, G .
PHYSICAL REVIEW LETTERS, 1993, 70 (24) :3780-3783
[8]   SPONTANEOUS DIMERIZATION IN THE S=1/2 HEISENBERG ANTI-FERROMAGNETIC CHAIN WITH COMPETING INTERACTIONS [J].
HALDANE, FDM .
PHYSICAL REVIEW B, 1982, 25 (07) :4925-4928
[9]  
Karabach M, 1997, COMPUT PHYS, V11, P36
[10]   THEORY OF INSULATING STATE [J].
KOHN, W .
PHYSICAL REVIEW, 1964, 133 (1A) :A171-A181