blockade of N-methyl-D-aspartate receptors by phencyclidine causes the loss of corticostriatal neurons

被引:49
作者
Wang, C [1 ]
Anastasio, N [1 ]
Popov, V [1 ]
Leday, A [1 ]
Johnson, KM [1 ]
机构
[1] Univ Texas, Dept Pharmacol & Toxicol, Med Branch, Galveston, TX 77555 USA
关键词
NMDA receptor; neurodegeneration; apoptosis; polysialic acid neural cell adhesion molecule (PSA-NCAM); synaptophysin; schizophrenia;
D O I
10.1016/j.neuroscience.2004.02.003
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Perinatal administration of the N-methyl-D-aspartate (NMDA) receptor antagonist phencyclidine (PCP) has been reported to produce regionally selective apoptotic cell death in the frontal cortex. The development of certain behavioral abnormalities following PCP treatment suggested that extracortical regions such as the striatum also could be affected. In this study, perinatal PCP treatment caused a marked reduction in striatal, but not hippocampal, staining for polysialic acid-neural cell adhesion molecule (PSA-NCAM), an NMDA-regulated molecule important in synaptogenesis. In order to isolate striatal influences to the cortex, this investigation was continued in vitro using corticostriatal slices. For these experiments we cultured coronal corticostriatal slices from postnatal day 7 rats. After 4 days in vitro, PCP was added for 48 h and then washed out for 24 h before harvesting the tissue. Similar to what was observed in vivo, we found that PCP treatment results in a marked reduction in striatal staining for PSA-NCAM. No change was observed in the mature form of NCAM. In striatal synaptoneurosomes, immunoblot analysis confirmed that the levels of PSA-NCAM and synaptophysin, a molecule often used as a marker of synaptogenesis, were substantially down-regulated by PCP. These effects were prevented by M40403, a superoxide dismutase mimetic that also prevented the PCP-induced terminal dUTP nick-end labeling of DNA fragments that was observed selectively in the cortex. These data suggest that PCP causes cell death by apoptosis selectively in the cortex, but not in the striatum, following either in vivo treatment of perinatal rat pups or in vitro treatment of corticostriatal slices. Further, cortical apoptosis induced by PCP negatively impacts striatal synaptogenesis, a process important in normal neural development. This deficit is probably caused by a reduction in corticostriatal neurotransmission. It is possible that the dysregulation of striatal synaptogenesis contributes to the behavioral abnormalities observed following perinatal PCP administration in vivo. (C) 2004 IBRO. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:473 / 483
页数:11
相关论文
共 46 条
[1]   HETEROGENEOUS DISTRIBUTION OF POLYSIALYLATED NEURONAL-CELL ADHESION MOLECULE DURING POST-NATAL DEVELOPMENT AND IN THE ADULT - AN IMMUNOHISTOCHEMICAL STUDY IN THE RAT-BRAIN [J].
AARON, LI ;
CHESSELET, MF .
NEUROSCIENCE, 1989, 28 (03) :701-710
[2]   NCAM POLYSIALIC ACID CAN REGULATE BOTH CELL CELL AND CELL SUBSTRATE INTERACTIONS [J].
ACHESON, A ;
SUNSHINE, JL ;
RUTISHAUSER, U .
JOURNAL OF CELL BIOLOGY, 1991, 114 (01) :143-153
[3]   EXCITATORY AMINO-ACID BINDING-SITES IN THE BASAL GANGLIA OF THE RAT - A QUANTITATIVE AUTORADIOGRAPHIC STUDY [J].
ALBIN, RL ;
MAKOWIEC, RL ;
HOLLINGSWORTH, ZR ;
DURE, LS ;
PENNEY, JB ;
YOUNG, AB .
NEUROSCIENCE, 1992, 46 (01) :35-48
[4]   MAPPING OF THE DISTRIBUTION OF POLYSIALYLATED NEURAL CELL-ADHESION MOLECULE THROUGHOUT THE CENTRAL-NERVOUS-SYSTEM OF THE ADULT-RAT - AN IMMUNOHISTOCHEMICAL STUDY [J].
BONFANTI, L ;
OLIVE, S ;
POULAIN, DA ;
THEODOSIS, DT .
NEUROSCIENCE, 1992, 49 (02) :419-436
[5]   Dual effects of NMDA receptor activation on polysialylated neural cell adhesion molecule expression during brainstem postnatal development [J].
Bouzioukh, F ;
Tell, F ;
Rougon, G ;
Jean, A .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2001, 14 (08) :1194-1202
[6]  
BREEN KC, 1988, DEVELOPMENT, V104, P147
[7]   Regulation of neural cell adhesion molecule polysialylation:: Evidence for nontranscriptional control and sensitivity to an intracellular pool of calcium [J].
Brusés, JL ;
Rutishauser, U .
JOURNAL OF CELL BIOLOGY, 1998, 140 (05) :1177-1186
[8]   N-methyl-D-aspartate receptor blockade affects polysialylated neural cell adhesion molecule expression and synaptic density during striatal development [J].
Butler, AK ;
Uryu, K ;
Rougon, G ;
Chesselet, MF .
NEUROSCIENCE, 1999, 89 (04) :1169-1181
[9]  
CHUONG CM, 1984, J NEUROSCI, V4, P2354
[10]   IDENTIFICATION OF PROGRAMMED CELL-DEATH INSITU VIA SPECIFIC LABELING OF NUCLEAR-DNA FRAGMENTATION [J].
GAVRIELI, Y ;
SHERMAN, Y ;
BENSASSON, SA .
JOURNAL OF CELL BIOLOGY, 1992, 119 (03) :493-501