Mechanical behavior of particle filled elastomers

被引:245
作者
Bergström, JS [1 ]
Boyce, MC [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
来源
RUBBER CHEMISTRY AND TECHNOLOGY | 1999年 / 72卷 / 04期
关键词
D O I
10.5254/1.3538823
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The strong influence of relatively small amounts of filler particles, such as carbon black, on the mechanical properties of elastomers has been well known for decades and has significantly contributed to increased use of elastomeric materials in many commercial applications. Even though the use of fillers is ubiquitous, satisfactory understanding and modeling of the micromechanisms by which fillers alter the mechanical behavior of elastomers has still not been realized. In this work the influence of filler particles on the equilibrium stress-strain response has been investigated. First, an experimental investigation probing the behavior of a chloroprene rubber with varied filler content has been performed. The experimental data allowed for a direct evaluation of both a newly developed constitutive model based on the amplification of the first strain invariant, and a number of other models proposed in the literature. A direct comparison with experimental data suggest that the new model generates superior predictions, particularly for large strain deformations. Then, in an effort to examine some of the assumptions that are common in the constitutive modeling and also to try to determine which of the input parameters are most important, a derailed series of micromechanical models were constructed using two- and three-dimensional finite element simulations. The results indicate that the effect of filler particles on the equilibrium behavior of elastomers can be accurately predicted using stochastic three-dimensional simulations suggesting that successful modeling mainly requires a rigorous treatment of the composite nature of the microstructure and not molecular level concepts such as alteration of mobility or effective crosslinking density in the elastomeric phase of the material.
引用
收藏
页码:633 / 656
页数:24
相关论文
共 34 条
[1]   A 3-DIMENSIONAL CONSTITUTIVE MODEL FOR THE LARGE STRETCH BEHAVIOR OF RUBBER ELASTIC-MATERIALS [J].
ARRUDA, EM ;
BOYCE, MC .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1993, 41 (02) :389-412
[2]   Constitutive modeling of the large strain time-dependent behavior of elastomers [J].
Bergstrom, JS ;
Boyce, MC .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1998, 46 (05) :931-954
[3]   BREAKAGE OF CARBON-RUBBER NETWORKS BY APPLIED STRESS [J].
BLANCHARD, AF ;
PARKINSON, D .
INDUSTRIAL AND ENGINEERING CHEMISTRY, 1952, 44 (04) :799-812
[4]   Direct comparison of the Gent and the Arruda-Boyce constitutive models of rubber elasticity [J].
Boyce, MC .
RUBBER CHEMISTRY AND TECHNOLOGY, 1996, 69 (05) :781-785
[5]   ON ELASTIC MODULI OF SOME HETEROGENEOUS MATERIALS [J].
BUDIANSK.B .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1965, 13 (04) :223-&
[6]  
Bueche F., 1960, J. Appl. Polym. Sci., V4, P107, DOI [10.1002/app.1960.070041017, DOI 10.1002/APP.1960.070041017]
[7]  
Bueche F., 1961, J. Appl. Polym. Sci., V5, P271
[9]   A new determination of the molecular dimensions (vol 19, pg 289, 1906) [J].
Einstein, A .
ANNALEN DER PHYSIK, 1911, 34 (03) :591-592
[10]   A new determination of the molecular dimensions [J].
Einstein, A .
ANNALEN DER PHYSIK, 1906, 19 (02) :289-306