Application of fragment molecular orbital scheme to silicon-containing systems

被引:14
作者
Ishikawa, Takeshi
Mochizuki, Yuji
Imamura, Kenji
Nakano, Tatsuya
Mori, Hirotoshi
Tokiwa, Hiroaki
Tanaka, Kiyoshi
Miyoshi, Eisaku
Tanaka, Shigenori
机构
[1] Rikkyo Univ, Dept Chem, Fac Sci, Toshima Ku, Tokyo 1718501, Japan
[2] Japan Sci & Technol Agcy, CREST Project, Kawaguchi, Saitama 3320012, Japan
[3] Natl Inst Hlth Sci, Div Safety Informat Drug Food & Chem, Setagaya Ku, Tokyo 1588501, Japan
[4] Kyushu Univ, Grad Sch Engn Sci, Kasuga, Fukuoka 8168580, Japan
[5] Univ Tokyo, Ctr Collaborat Res, Meguro Ku, Tokyo 1538904, Japan
[6] Univ Tokyo, Inst Ind Sci, Meguro Ku, Tokyo 1538904, Japan
[7] Kobe Univ, Grad Sch Sci & Technol, Nada Ku, Kobe, Hyogo 6578501, Japan
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
D O I
10.1016/j.cplett.2006.09.015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The fragment molecular orbital (FMO) scheme has been successfully used for a variety of large-scale molecules such as proteins and nucleic acids so far. We have applied the FMO calculations to the silicon-containing systems like polysilanes. The error caused by the fragmentation was examined by the Hartree-Fock method and the second-order Moller-Plesset (MP2) perturbation method for the ground state energy. The dynamic polarizability as a linear response property was also evaluated with and without the fragmentation. A series of numerical comparisons showed that the FMO scheme is applicable to silicon-based molecules with reasonable accuracy. This implied a potential availability of FMO calculations for the issues relevant to nanoscience and nanotechnology. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:361 / 366
页数:6
相关论文
共 36 条
[1]  
Auner N, 2005, ORGANOSILICON CHEMISTRY VI: FROM MOLECULES TO MATERIALS, P1, DOI 10.1002/9783527618224
[2]   Porous silicon: a quantum sponge structure for silicon based optoelectronics [J].
Bisi, O ;
Ossicini, S ;
Pavesi, L .
SURFACE SCIENCE REPORTS, 2000, 38 (1-3) :1-126
[4]   The importance of three-body terms in the fragment molecular orbital method [J].
Fedorov, DG ;
Kitaura, K .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (15) :6832-6840
[5]   Multiconfiguration self-consistent-field theory based upon the fragment molecular orbital method [J].
Fedorov, DG ;
Kitaura, K .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (05)
[6]   A new hierarchical parallelization scheme: Generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO) [J].
Fedorov, DG ;
Olson, RM ;
Kitaura, K ;
Gordon, MS ;
Koseki, S .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2004, 25 (06) :872-880
[7]  
Foresman J.B., 1996, EXPLORING CHEM ELECT
[8]   TOWARD A SYSTEMATIC MOLECULAR-ORBITAL THEORY FOR EXCITED-STATES [J].
FORESMAN, JB ;
HEADGORDON, M ;
POPLE, JA ;
FRISCH, MJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (01) :135-149
[9]  
Frisch M. J., GAUSSIAN
[10]   Intra- and intermolecular interactions between cyclic-AMP receptor protein and DNA:: Ab initio fragment molecular orbital study [J].
Fukuzawa, K ;
Komeiji, Y ;
Mochizuki, Y ;
Kato, A ;
Nakano, T ;
Tanaka, S .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (08) :948-960