Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation

被引:372
作者
Izcue, Ana [1 ]
Coombes, Janine L. [1 ]
Powrie, Fiona [1 ]
机构
[1] Univ Oxford, Sir William Dunn Sch Pathol, Oxford OX1 3RE, England
基金
英国惠康基金;
关键词
regulatory T cells; intestinal homeostasis; transforming growth factor-beta; interleukin-10; cytotoxic T-lymphocyte antigen-4; inflammatory bowel disease;
D O I
10.1111/j.0105-2896.2006.00423.x
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The gastrointestinal (GI) tract is the main interface where the body encounters exogenous antigens. It is crucial that the local response here is tightly regulated to avoid an immune reaction against dietary antigens and commensal flora while still mounting an efficient defense against pathogens. Faults in establishing intestinal tolerance can lead to disease, inducing local and often also systemic inflammation. Studies in human as well as in animal models suggest a role for regulatory T cells (Tregs) in maintaining intestinal homeostasis. Transfer of Tregs can not only prevent the development of colitis in animal models but also cure established disease, acting both systemically and at the site of inflammation. In this review, we discuss the major regulatory pathways, including transforming growth factor-beta (TGF-beta), interleukin-10 (IL-10), and cytotoxic T-lymphocyte antigen-4 (CTLA-4), and their role in Treg-mediated control of systemic and mucosal responses. In addition, we give an overview of the known mechanisms of lymphocyte migration to the intestine and discuss how CD103 expression can influence the balance between regulatory and effector T cells. Further understanding of the factors that control the activity of Tregs in different immune compartments may facilitate the design of strategies to target regulation in a tissue-specific way.
引用
收藏
页码:256 / 271
页数:16
相关论文
共 141 条
[1]   TLR signaling in the gut in health and disease [J].
Abreu, MT ;
Fukata, M ;
Arditi, M .
JOURNAL OF IMMUNOLOGY, 2005, 174 (08) :4453-4460
[2]   Distribution of alpha(4)beta(7) and alpha(E)beta(7) integrins on thymocytes, intestinal epithelial lymphocytes and peripheral lymphocytes [J].
Andrew, DP ;
Rott, LS ;
Kilshaw, PJ ;
Butcher, EC .
EUROPEAN JOURNAL OF IMMUNOLOGY, 1996, 26 (04) :897-905
[3]   Essential role for CD103 in the T cell-mediated regulation of experimental colitis [J].
Annacker, O ;
Coombes, JL ;
Malmstrom, V ;
Uhlig, HH ;
Bourne, T ;
Johansson-Lindbom, B ;
Agace, WW ;
Parker, CM ;
Powrie, F .
JOURNAL OF EXPERIMENTAL MEDICINE, 2005, 202 (08) :1051-1061
[4]   CD25+ CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10 [J].
Annacker, O ;
Pimenta-Araujo, R ;
Burlen-Defranoux, O ;
Barbosa, TC ;
Cumano, A ;
Bandeira, A .
JOURNAL OF IMMUNOLOGY, 2001, 166 (05) :3008-3018
[5]  
Aranda R, 1997, J IMMUNOL, V158, P3464
[6]   Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation [J].
Asano, M ;
Toda, M ;
Sakaguchi, N ;
Sakaguchi, S .
JOURNAL OF EXPERIMENTAL MEDICINE, 1996, 184 (02) :387-396
[7]   Interleukin 10 is a growth factor for a population of regulatory T cells [J].
Asseman, C ;
Powrie, F .
GUT, 1998, 42 (02) :157-158
[8]   Colitogenic Th1 cells are present in the antigen-experienced T cell pool in normal mice:: Control by CD4+ regulatory T cells and IL-10 [J].
Asseman, C ;
Read, S ;
Powrie, F .
JOURNAL OF IMMUNOLOGY, 2003, 171 (02) :971-978
[9]   Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4 [J].
Attia, P ;
Phan, GQ ;
Maker, AV ;
Robinson, MR ;
Quezado, MM ;
Yang, JC ;
Sherry, RM ;
Topalian, SL ;
Kammula, US ;
Royal, RE ;
Restifo, NP ;
Haworth, LR ;
Levy, C ;
Mavroukakis, SA ;
Nichol, G ;
Yellin, MJ ;
Rosenberg, SA .
JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (25) :6043-6053
[10]  
Bachmann MF, 1999, J IMMUNOL, V163, P1128