Inhibition of programmed cell death impairs in vitro vascular-like structure formation and reduces in vivo angiogenesis

被引:82
作者
Segura, I [1 ]
Serrano, A [1 ]
De Buitrago, GG [1 ]
González, MA [1 ]
Abad, JL [1 ]
Clavería, C [1 ]
Gómez, L [1 ]
Bernad, A [1 ]
Martínez-A, C [1 ]
Riese, HH [1 ]
机构
[1] Univ Autonoma Madrid, CSIC, Ctr Nacl Biotecnol, Dept Immunol & Oncol, E-28049 Madrid, Spain
关键词
vasculogenesis; apoptosis; caspase inhibitors;
D O I
10.1096/fj.01-0819com
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Tissue remodeling during embryonic development and in the adult organism relies on a subtle balance between cell growth and apoptosis. As angiogenesis involves restructuring of preexisting endothelium, we examined the role of apoptosis in new vessel formation. We show that apoptosis occurs before capillary formation but not after vessels have assembled. Using the human umbilical vein endothelial cell (HUVEC) in vitro Matrigel angiogenesis model, we show that vascular-like structure formation requires apoptotic cell death through activation of a caspase-dependent mechanism and mitochondrial cytochrome c release. Vascular-like structure formation was further blocked by caspase inhibitors such as z-VAD or Ac-DEVD-CHO, using HUVEC and human lung microvascular endothelial cells. Overexpression of anti-apoptotic human Bcl-2 or baculovirus p35 genes in HUVEC altered endothelial cell rearrangement during in vitro angiogenesis, causing impaired vessel-like structure formation. Caspase inhibitors blocked VEGF- or bFGF-induced HUVEC angiogenesis on 2- or 3-D collagen gels, respectively, confirming that apoptosis was not the result of nonspecific cell death after seeding on the matrix. In an in vivo angiogenesis assay, caspase inhibitors blocked VEGF- dependent vascular formation at the alignment step, as demonstrated histologically. This evidence indicates that endothelial cell apoptosis may be relevant for precise vascular tissue rearrangement in in vitro and in vivo angiogenesis.
引用
收藏
页码:833 / 841
页数:9
相关论文
共 32 条
[1]   ANGIOGENIC PROPERTIES OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 TAT PROTEIN [J].
ALBINI, A ;
BARILLARI, G ;
BENELLI, R ;
GALLO, RC ;
ENSOLI, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (11) :4838-4842
[2]  
BROOKS PC, 1994, CELL, V79, P1147
[3]   REGULATION OF ENDOTHELIAL-CELL MORPHOGENESIS BY INTEGRINS, MECHANICAL FORCES, AND MATRIX GUIDANCE PATHWAYS [J].
DAVIS, GE ;
CAMARILLO, CW .
EXPERIMENTAL CELL RESEARCH, 1995, 216 (01) :113-123
[4]   Clinical applications of angiogenic growth factors and their inhibitors [J].
Ferrara, N ;
Alitalo, K .
NATURE MEDICINE, 1999, 5 (12) :1359-1364
[5]   WHAT IS THE EVIDENCE THAT TUMORS ARE ANGIOGENESIS DEPENDENT [J].
FOLKMAN, J .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1990, 82 (01) :4-6
[6]   DEFINITION OF 2 ANGIOGENIC PATHWAYS BY DISTINCT ALPHA(V) INTEGRINS [J].
FRIEDLANDER, M ;
BROOKS, PC ;
SHAFFER, RW ;
KINCAID, CM ;
VARNER, JA ;
CHERESH, DA .
SCIENCE, 1995, 270 (5241) :1500-1502
[7]   Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner [J].
Fujio, Y ;
Walsh, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (23) :16349-16354
[8]   2 DIFFERENT LAMININ DOMAINS MEDIATE THE DIFFERENTIATION OF HUMAN-ENDOTHELIAL CELLS INTO CAPILLARY-LIKE STRUCTURES INVITRO [J].
GRANT, DS ;
TASHIRO, KI ;
SEGULREAL, B ;
YAMADA, Y ;
MARTIN, GR ;
KLEINMAN, HK .
CELL, 1989, 58 (05) :933-943
[9]   Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF [J].
Holash, J ;
Maisonpierre, PC ;
Compton, D ;
Boland, P ;
Alexander, CR ;
Zagzag, D ;
Yancopoulos, GD ;
Wiegand, SJ .
SCIENCE, 1999, 284 (5422) :1994-1998
[10]   New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF [J].
Holash, J ;
Wiegand, SJ ;
Yancopoulos, GD .
ONCOGENE, 1999, 18 (38) :5356-5362