The major site of the Pti1 kinase phosphorylated by the Pto kinase is located in the activation domain and is required for Pto-Pti1 physical interaction

被引:34
作者
Sessa, G
D'Ascenzo, M
Martin, GB
机构
[1] Cornell Univ, Boyce Thompson Inst Plant Res, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Plant Pathol, Ithaca, NY 14853 USA
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 2000年 / 267卷 / 01期
关键词
disease resistance; phosphorylation; Pti1; Pto; tomato;
D O I
10.1046/j.1432-1327.2000.00979.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Pto and Pti1 serine/threonine protein kinases are key components of the signaling pathway leading to speck disease resistance in tomato. The two kinases physically interact in the yeast two-hybrid system, and Pto specifically phosphorylates Pti1 in vitro. In this study, we identified and characterized the major Pti1 site phosphorylated by Pto. Pto was expressed in Escherichia coli as a maltose-binding fusion protein (MBP-Pto), and used to phosphorylate in vitro a kinase deficient Pti1 protein fused to glutathione S-transferase (GST-Pti1[K96N]). The major phosphopeptide derived from trypsin digestion of phosphorylated GST-Pti1(K96N) was partially purified by reverse-phase HPLC and analyzed by matrix assisted laser desorption/ionization mass spectrometry. Its mass corresponded to phosphopeptide LHSTR, which lies in the Pti1 kinase activation domain at amino acid position 230-234. By phosphoamino acid analysis, Thr233 was determined to be the phosphorylation site of peptide LHSTR. Mutations of Thr233 reduced dramatically Pti1 phosphorylation by MBP-Pto and Pti1 autophosphorylation, providing evidence that the same Pti1 site is involved in the two reactions. Moreover, phosphorylation of Thr233 appeared to be required for Pto-Pti1 physical interaction, as a mutation of this site to alanine, but not to aspartate, abolished the interaction between Pto and Pti1 in the yeast two-hybrid system.
引用
收藏
页码:171 / 178
页数:8
相关论文
共 34 条
[1]  
[Anonymous], 1993, PROTEIN PHOSPHORYLAT
[2]   Signaling in plant-microbe interactions [J].
Baker, B ;
Zambryski, P ;
Staskawicz, B ;
DineshKumar, SP .
SCIENCE, 1997, 276 (5313) :726-733
[3]   IRAK: A kinase associated with the interleukin-1 receptor [J].
Cao, ZD ;
Henzel, WJ ;
Gao, XO .
SCIENCE, 1996, 271 (5252) :1128-1131
[4]   THE TMK1-GENE FROM ARABIDOPSIS CODES FOR A PROTEIN WITH STRUCTURAL AND BIOCHEMICAL CHARACTERISTICS OF A RECEPTOR PROTEIN-KINASE [J].
CHANG, C ;
SCHALLER, GE ;
PATTERSON, SE ;
KWOK, SF ;
MEYEROWITZ, EM ;
BLEECKER, AB .
PLANT CELL, 1992, 4 (10) :1263-1271
[5]   Light-repressible receptor protein kinase: A novel photo-regulated gene from Arabidopsis thaliana [J].
Deeken, R ;
Kaldenhoff, R .
PLANTA, 1997, 202 (04) :479-486
[6]   CURRENT STATUS OF GENE-FOR-GENE CONCEPT [J].
FLOR, HH .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 1971, 9 :275-+
[7]   Recognition specificity for the bacterial avirulence protein AvrPto is determined by Thr-204 in the activation loop of the tomato Pto kinase [J].
Frederick, RD ;
Thilmony, RL ;
Sessa, G ;
Martin, GB .
MOLECULAR CELL, 1998, 2 (02) :241-245
[8]  
GOLEMIS EA, 1995, CURRENT PROTOCOLS MO, V3
[9]   Molecular mechanisms involved in bacterial speck disease resistance of tomato [J].
Gu, YQ ;
Martin, GB .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1998, 353 (1374) :1455-1461
[10]   Plant disease resistance genes [J].
HammondKosack, KE ;
Jones, JDG .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1997, 48 :575-607