Solutions of the Einstein-Maxwell-Dirac and Seiberg-Witten monopole equations

被引:4
作者
Saçlioglu, C [1 ]
机构
[1] Bogazici Univ, Dept Phys, TR-80815 Bebek, Istanbul, Turkey
[2] Bogazici Univ, TUBITAK, Feza Gursey Inst, TR-81220 Istanbul, Turkey
关键词
D O I
10.1088/0264-9381/17/2/314
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present unique solutions of the Seiberg-Witten monopole equations in which the U(1) curvature is covariantly constant, the monopole Weyl spinor consists of a single constant component and the 4-manifold is a product of two Riemann surfaces of genuses p(1) and p(2). There are p(1) - 1 magnetic vorticeson one surface and p(2) - 1 electric ones on the other, with p(1) + p(2) greater than or equal to 2 (p(1) = p(2) = 1 being excluded). When p(1) = p(2), the electromagnetic fields are self-dual and one also has a solution of the coupled Euclidean Einstein-Maxwell-Dirac equations, with the monopole condensate serving as a cosmological constant. The metric is decomposable and the electromagnetic fields are covariantly constant as in the Bertotti-Robinson solution. The Einstein metric can also be derived from a Kahler potential satisfying the Monge-Ampere equations.
引用
收藏
页码:485 / 495
页数:11
相关论文
共 14 条
[1]  
Akbulut S, 1996, TURKISH J MATH, V20, P95
[2]  
[Anonymous], 1959, Bull.Acad.Pol.Sci.Ser.Sci.Math.Astron.Phys
[3]   UNIFORM ELECTROMAGNETIC FIELD IN THE THEORY OF GENERAL RELATIVITY [J].
BERTOTTI, B .
PHYSICAL REVIEW, 1959, 116 (05) :1331-1333
[4]  
DUBROVIN BA, 1985, MODER GEOMETRY, V2
[5]  
EGUCHI T, 1980, PHYS REP, V66, P213, DOI 10.1016/0370-1573(80)90130-1
[6]  
Ford L.R., 1951, Automorphic Functions, V2nd
[7]  
LeBrun C, 1998, GEOMETRIC UNIVERSE, P109
[8]  
Liouville J., 1853, J Math Pures Appl, V18, P71
[9]  
Nehari Z., 1952, Conformal Mappings
[10]  
SACHOGLU C, 1999, PHYS LETT B, V454, P315