Performance guarantees for the TSP with a parameterized triangle inequality

被引:44
作者
Bender, MA
Chekuri, C [1 ]
机构
[1] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
[2] Bell Labs, Murray Hill, NJ 07974 USA
关键词
approximation algorithms; traveling salesman problem; relaxed triangle inequality; algorithms;
D O I
10.1016/S0020-0190(99)00160-X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the approximability of the TSP problem in graphs that satisfy a relaxed form of triangle inequality. More precisely, we assume that for some parameter tau greater than or equal to 1, the distances satisfy the inequality dist(x, y) less than or equal to tau . (dist(x, z) + dist(z, y)) for every triple of vertices x, y, and z. We obtain a 4 tau-approximation and also show that for some epsilon(0) > 0 it is NP-hard to obtain a (1 + epsilon(0)tau)-approximation for all tau greater than or equal to 1. Our upper bound improves upon the earlier known ratio of (tau(2) + tau) [1] for all values of tau > 3. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:17 / 21
页数:5
相关论文
共 17 条
[1]   PERFORMANCE GUARANTEES FOR APPROXIMATION ALGORITHMS DEPENDING ON PARAMETRIZED TRIANGLE INEQUALITIES [J].
ANDREAE, T ;
BANDELT, HJ .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1995, 8 (01) :1-16
[2]  
ANDREAE T, 1998, MATH SEM U HAMB
[3]   Polynomial time approximation schemes for euclidean TSP and other geometric problems [J].
Arora, S .
37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, :2-11
[4]  
ARORA S, IN PRESS J ACM
[5]  
CHRISTOFIDES N, 1976, 338 C MELL U GRAD SC
[6]   Relaxing the triangle inequality in pattern matching [J].
Fagin, R ;
Stockmeyer, L .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1998, 30 (03) :219-231
[7]  
Fleischner H., 1974, Journal of Combinatorial Theory, Series B, V16, P29, DOI 10.1016/0095-8956(74)90091-4
[8]  
Fleischner H., 1974, Journal of Combinatorial Theory, Series B, V16, P17, DOI 10.1016/0095-8956(74)90090-2
[9]   Improved approximation algorithms for uniform connectivity problems [J].
Khuller, S ;
Raghavachari, B .
JOURNAL OF ALGORITHMS, 1996, 21 (02) :434-450
[10]  
LAU H, 1980, THESIS MCGILL U