Disrupted spermine homeostasis: A novel mechanism in polyglutamine-mediated aggregation and cell death

被引:17
作者
Colton, CA
Xu, Q
Burke, JR
Bae, SY
Wakefield, JK
Nair, A
Strittmatter, WJ
Vitek, MP
机构
[1] Duke Univ, Med Ctr, Div Neurol, Deane Lab, Durham, NC 27710 USA
[2] Tranzyme Inc, Res Triangle Pk, NC 27709 USA
关键词
spermine; polyglutamine; Huntington's disease; difluoromethylornithine; protein aggregation; nitric oxide;
D O I
10.1523/JNEUROSCI.1233-04.2004
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Our data suggest a novel mechanism whereby pathological-length polyglutamine ( polyQ) proteins promote the spermine synthetic pathway, increasing polyQ-aggregation and cell death. As detected in a cell-free turbidity assay, spermine promotes aggregation of thio-polyQ62 in a dose-dependent manner. Using a stable neuronal cell line expressing pathological-length [polyQ57-yellow fluorescent protein (YFP) (Q57)] or non-pathological-length [polyQ19-YFP (Q19)] polyglutamine protein, we show that multiple steps in the production of polyamines are affected in Q57 cells, suggesting dysfunctional spermine homeostasis. As the building block for spermine synthesis, arginine transport is significantly increased in neuronal cell lines stably expressing Q57. Q57 lines displayed upregulated basal and inducible arginase I activities that were not seen in polyQ19-YFP lines. Normal induction of spermidine/spermine N-acetyltransferase in Q19 lines regulating back-conversion of spermine, thereby reducing spermine levels, however, was not observed in Q57 lines. Pharmacological activation of ornithine decarboxylase (ODC), a key enzyme of the polyamine synthetic pathway, increased cellular aggregates and increased cell death in Q57 cells not observed in Q19 cells. Inhibition of ODC by difluoromethylornithine prevented basal and induced cell death in Q57 cells, demonstrating a central role for polyamines in this process.
引用
收藏
页码:7118 / 7127
页数:10
相关论文
共 87 条
[1]   Cellular polyamines promote the aggregation of α-synuclein [J].
Antony, T ;
Hoyer, W ;
Cherny, D ;
Heim, G ;
Jovin, TM ;
Subramaniam, V .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (05) :3235-3240
[2]   Spermine and arcaine block and permeate N-methyl-D-aspartate receptor channels [J].
Araneda, RC ;
Lan, JY ;
Zheng, X ;
Zukin, RS ;
Bennett, MVL .
BIOPHYSICAL JOURNAL, 1999, 76 (06) :2899-2911
[3]   N5-(1-imino-5-butenyl)-L-ornithine -: A neuronal isoform selective mechanism-based inactivator of nitric oxide synthase [J].
Babu, BR ;
Griffith, OW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (15) :8882-8889
[4]   Nitric oxide inhibits ornithine decarboxylase by S-nitrosylation [J].
Bauer, PM ;
Fukuto, JM ;
Buga, GM ;
Pegg, AE ;
Ignarro, LJ .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 262 (02) :355-358
[5]   Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for L-arginine utilization [J].
Boucher, JL ;
Moali, C ;
Tenu, JP .
CELLULAR AND MOLECULAR LIFE SCIENCES, 1999, 55 (8-9) :1015-1028
[6]   L-arginine uptake, the citrulline-NO cycle and arginase II in the rat brain: an in situ hybridization study [J].
Braissant, O ;
Gotoh, T ;
Loup, M ;
Mori, M ;
Bachmann, C .
MOLECULAR BRAIN RESEARCH, 1999, 70 (02) :231-241
[7]   THE QUINOLINIC ACID HYPOTHESIS IN HUNTINGTON CHOREA [J].
BRUYN, RPM ;
STOOF, JC .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 1990, 95 (01) :29-38
[8]   Arginase activity in endothelial cells: Inhibition by N-G-hydroxy-L-arginine during high-output NO production [J].
Buga, GM ;
Singh, R ;
Pervin, S ;
Rogers, NE ;
Schmitz, DA ;
Jenkinson, CP ;
Cederbaum, SD ;
Ignarro, LJ .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1996, 271 (05) :H1988-H1998
[9]   Arginase I and Polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth MAG and myelin in vitro [J].
Cai, DM ;
Deng, KW ;
Mellado, W ;
Lee, J ;
Ratan, RR ;
Filbin, MT .
NEURON, 2002, 35 (04) :711-719
[10]   Synaptic transmission in the striatum: from plasticity to neurodegeneration [J].
Calabresi, P ;
Centonze, D ;
Gubellini, P ;
Marfia, GA ;
Pisani, A ;
Sancesario, G ;
Bernardi, G .
PROGRESS IN NEUROBIOLOGY, 2000, 61 (03) :231-265