Molecular dynamics simulations of PAMAM dendrimer-induced pore formation in DPPC bilayers with a coarse-grained model

被引:188
作者
Lee, Hwankyu
Larson, Ronald G. [1 ]
机构
[1] Univ Michigan, Dept Chem Engn Biomed Engn & Mech Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Macromol Sci & Engn Program, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
关键词
D O I
10.1021/jp0630830
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have performed 0.5-mu s-long molecular dynamics (MD) simulations of 0%, 50%, and 100% acetylated third-(G3) and fifth-generation (G5) polyamidoamine (PAMAM) dendrimers in dipalmitoylphosphatidylcholine (DPPC) bilayers with explicit water using the coarse-grained (CG) model developed by Marrink et al. (J. Phys. Chem. B 2004, 108, 750-760), but with long-range electrostatic interactions included. Radii of gyration of the CG G5 dendrimers are 1.99-2.32 nm, close to those measured in the experiments by Prosa et al. (J. Polym. Sci. 1997, 35, 2913-2924) and atomistic simulations by Lee et al. (J. Phys. Chem. B 2006, 110, 4014-4019). Starting with the dendrimer initially positioned near the bilayer, we find that positively charged un-acetylated G3 and 50%-acetylated and un-acetylated G5 dendrimers insert themselves into the bilayer, and only un-acetylated G5 dendrimer induces hole formation at 310 K, but not at 277 K, which agrees qualitatively with experimental observations of Hong et al. (Bioconj. Chem. 2004, 15, 774-782) and Mecke et al. (Langmuir 2005, 21, 10348-10354). At higher salt concentration (similar to 500 mM NaCl), un-acetylated G5 dendrimer does not insert into the bilayer. The results suggest that with inclusion of long-range electrostatic interactions into coarse-grained models, realistic MD simulation of membrane-disrupting effects of nanoparticles at the microsecond time scale is now possible.
引用
收藏
页码:18204 / 18211
页数:8
相关论文
共 30 条
[1]   The Synthesis and Testing of Anti-Cancer Therapeutic Nanodevices [J].
Baker, James R., Jr. ;
Quintana, Antonio ;
Piehler, Lars ;
Banazak-Holl, Mark ;
Tomalia, Donald ;
Raczka, Ewa .
BIOMEDICAL MICRODEVICES, 2001, 3 (01) :61-69
[2]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[3]   Insertion and assembly of membrane proteins via simulation [J].
Bond, PJ ;
Sansom, MSP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (08) :2697-2704
[4]   Synthesis and functional evaluation of DNA-assembled polyamidoamine dendrimer clusters for cancer cell-specific targeting [J].
Choi, Y ;
Thomas, T ;
Kotlyar, A ;
Islam, MT ;
Baker, JR .
CHEMISTRY & BIOLOGY, 2005, 12 (01) :35-43
[5]   DNA-directed synthesis of generation 7 and 5 PAMAM dendrimer nanoclusters [J].
Choi, YS ;
Mecke, A ;
Orr, BG ;
Holl, MMB ;
Baker, JR .
NANO LETTERS, 2004, 4 (03) :391-397
[6]   MOLECULAR-DYNAMICS SIMULATION OF A SMECTIC LIQUID-CRYSTAL WITH ATOMIC DETAIL [J].
EGBERTS, E ;
BERENDSEN, HJC .
JOURNAL OF CHEMICAL PHYSICS, 1988, 89 (06) :3718-3732
[7]   A SMOOTH PARTICLE MESH EWALD METHOD [J].
ESSMANN, U ;
PERERA, L ;
BERKOWITZ, ML ;
DARDEN, T ;
LEE, H ;
PEDERSEN, LG .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (19) :8577-8593
[8]   Monte Carlo calculations for the intrinsic viscosity of several dendrimer molecules -: art. no. 154901 [J].
Freire, JJ ;
Rodríguez, E ;
Rubio, AM .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (15)
[9]   Conformations of flexible dendrimers:: A simulation study [J].
Götze, IO ;
Likos, CN .
MACROMOLECULES, 2003, 36 (21) :8189-8197
[10]   Molecular dynamics study of charged dendrimers in salt-free solution: Effect of counterions [J].
Gurtovenko, AA ;
Lyulin, SV ;
Karttunen, M ;
Vattulainen, I .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (09)