Phylogeny, sequence conservation, and functional complementation of the SBDS protein family

被引:27
作者
Boocock, G. R. B.
Marit, M. R.
Rommens, J. M.
机构
[1] Hosp Sick Children, Program Genet & Genom Biol, Toronto, ON M5G 1L7, Canada
[2] Univ Toronto, Dept Mol & Med Genet, Toronto, ON M5S 1A8, Canada
基金
英国惠康基金;
关键词
Shwachman-Diamond; SBDS; phylogeny; domain fusion; lateral transfer; RNA metabolism; ribosome; complementation;
D O I
10.1016/j.ygeno.2006.01.010
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The Shwachman-Bodian-Diamond syndrome (SBDS) protein family occurs widely in nature, although its function has not been determined. Comprehensive database searches revealed SBDS homologues from 159 species, including examples from all sequenced archaeal and eukaryotic genomes and all eukaryotic kingdoms. Sequence alignment with ClustaIX and MUSCLE algorithms led to the identification of conserved residues that occurred predominantly in the amino-terminal FYSH domain where they appeared to contribute to protein folding or stability. Only SBDS residue Gly91 was invariant in all species. Four distantly related protists were found to have two divergent SBDS genes in their genomes. In each case, phylogenetic analyses and the identification of shared sequence features suggested that one gene was derived from lateral gene transfer. We also identified a shared C-terminal zinc finger domain fusion in. flowering plants and chromalveolates that may shed light on the function of the protein family and the evolutionary histories of these kingdoms. To assess the extent of SBDS functional conservation, we carried out complementation studies of SBDS homologues and interspecies chimeras in Saccharomyces cerevisiae. We determined that the FYSH domain was widely interchangeable among eukaryotes, while domain 2 imparted species specificity to protein function. Domain 3 was largely dispensable for function in our yeast complementation assay. Overall, the phylogeny of SBDS was shared with a group of proteins that were markedly enriched for RNA metabolism and/or ribosome-associated functions. These findings link Shwachman-Diamond syndrome to other bone marrow failure syndromes with defects in nucleolus-associated processes, including Diamond-Blackfan anemia, cartilage-hair hypoplasia, and dyskeratosis congenita. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:758 / 771
页数:14
相关论文
共 44 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[3]   The Shwachman-Diamond SBDS protein localizes to the nucleolus [J].
Austin, KM ;
Leary, RJ ;
Shimamura, A .
BLOOD, 2005, 106 (04) :1253-1258
[4]   Genomes OnLine Database (GOLD): a monitor of genome projects world-wide [J].
Bernal, A ;
Ear, U ;
Kyrpides, N .
NUCLEIC ACIDS RESEARCH, 2001, 29 (01) :126-127
[5]   Variations of the C2H2 zinc finger motif in the yeast genome and classification of yeast zinc finger proteins [J].
Bohm, S ;
Frishman, D ;
Mewes, HW .
NUCLEIC ACIDS RESEARCH, 1997, 25 (12) :2464-2469
[6]   Mutations in SBDS are associated with Shwachman-Diamond syndrome [J].
Boocock, GRB ;
Morrison, JA ;
Popovic, M ;
Richards, N ;
Ellis, L ;
Durie, PR ;
Rommens, JM .
NATURE GENETICS, 2003, 33 (01) :97-101
[7]   Zinc finger proteins: Getting a grip on RNA [J].
Brown, RS .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2005, 15 (01) :94-98
[8]   Chloroplast evolution: Secondary symbiogenesis and multiple losses [J].
Cavalier-Smith, T .
CURRENT BIOLOGY, 2002, 12 (02) :R62-R64
[9]   Multiple sequence alignment with the Clustal series of programs [J].
Chenna, R ;
Sugawara, H ;
Koike, T ;
Lopez, R ;
Gibson, TJ ;
Higgins, DG ;
Thompson, JD .
NUCLEIC ACIDS RESEARCH, 2003, 31 (13) :3497-3500
[10]   The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia [J].
Draptchinskaia, N ;
Gustavsson, P ;
Andersson, B ;
Pettersson, M ;
Willig, TN ;
Dianzani, I ;
Ball, S ;
Tchernia, G ;
Klar, J ;
Matsson, H ;
Tentler, D ;
Mohandas, N ;
Carlsson, B ;
Dahl, N .
NATURE GENETICS, 1999, 21 (02) :169-175