Hemichannels in Cerebral Ischemia

被引:52
作者
Bargiotas, Panagiotis [1 ,2 ]
Monyer, Hannah [2 ]
Schwaninger, Markus [1 ]
机构
[1] Univ Heidelberg, Inst Pharmacol, D-69120 Heidelberg, Germany
[2] Univ Heidelberg, Clin Neurobiol, D-69120 Heidelberg, Germany
关键词
Cerebral ischemia; stroke; connexin; pannexins; hemichannel; gap junction; GAP-JUNCTION HEMICHANNELS; CEREBELLAR GRANULE CELLS; CONNEXIN HEMICHANNELS; GLUTAMATE RELEASE; ATP RELEASE; SPREADING DEPRESSION; XENOPUS-OOCYTES; BRAIN-DAMAGE; P2X(7) RECEPTOR; INTERCELLULAR COMMUNICATION;
D O I
10.2174/156652409787581646
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Hemichannels are transmembrane channels that represent the functional subunits of gap junctions. Each hemichannel is composed of a connexin or pannexin hexamer and, after being transported to the membrane, remains unpaired until it is incorporated in a gap junction. Several studies have already provided evidence that gap junction-mediated intercellular diffusion of ions and small molecules during ischemia represents an important mechanism through which necrotic, apoptotic, or even protective signals are transported between cells. Although initially hemichannels were supposed to be functional only in gap junctions, recent findings indicate that unpaired hemichannels also display a large array of activities that can be modulated under several pathophysiological conditions, including ischemia. Open hemichannels in ischemia dramatically alter the permeability properties of membranes and lead to cell death through ionic dysregulation, loss of metabolites, and changes in intracellular ATP. This review focuses on the properties and possible functions of unpaired connexin and pannexin hemichannels and the implications this has for a variety of events, such as cell death, glutamate release, oxidative stress, cortical spreading depression, that occur during an ischemic insult and may affect its outcome.
引用
收藏
页码:186 / 194
页数:9
相关论文
共 118 条
[1]  
Ahmad S, 2002, BIOCHEM J, V365, P693, DOI 10.1042/bj20011572
[2]   Interleukin-1 and neuronal injury [J].
Allan, SM ;
Tyrrell, PJ ;
Rothwell, NJ .
NATURE REVIEWS IMMUNOLOGY, 2005, 5 (08) :629-640
[3]   Pannexin membrane channels are mechanosensitive conduits for ATP [J].
Bao, L ;
Locovei, S ;
Dahl, G .
FEBS LETTERS, 2004, 572 (1-3) :65-68
[4]   APPARENT HYDROXYL RADICAL PRODUCTION BY PEROXYNITRITE - IMPLICATIONS FOR ENDOTHELIAL INJURY FROM NITRIC-OXIDE AND SUPEROXIDE [J].
BECKMAN, JS ;
BECKMAN, TW ;
CHEN, J ;
MARSHALL, PA ;
FREEMAN, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (04) :1620-1624
[5]   New roles for astrocytes:: Gap junction hemichannels have something to communicate [J].
Bennett, MVL ;
Contreras, JE ;
Bukauskas, FF ;
Sáez, JC .
TRENDS IN NEUROSCIENCES, 2003, 26 (11) :610-617
[6]   THE N-METHYL-D-ASPARTATE ANTAGONISTS CGS-19755 AND CPP REDUCE ISCHEMIC BRAIN-DAMAGE IN GERBILS [J].
BOAST, CA ;
GERHARDT, SC ;
PASTOR, G ;
LEHMANN, J ;
ETIENNE, PE ;
LIEBMAN, JM .
BRAIN RESEARCH, 1988, 442 (02) :345-348
[7]   Photoliberating inositol-1,4,5-trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap 26 [J].
Braet, K ;
Vandamme, W ;
Martin, PEM ;
Evans, WH ;
Leybaert, L .
CELL CALCIUM, 2003, 33 (01) :37-48
[8]   Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes [J].
Bruzzone, R ;
Barbe, MT ;
Jakob, NJ ;
Monyer, H .
JOURNAL OF NEUROCHEMISTRY, 2005, 92 (05) :1033-1043
[9]   Pannexins, a family of gap junction proteins expressed in brain [J].
Bruzzone, R ;
Hormuzdi, SG ;
Barbe, MT ;
Herb, A ;
Monyer, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (23) :13644-13649
[10]   Connections with connexins: The molecular basis of direct intercellular signaling [J].
Bruzzone, R ;
White, TW ;
Paul, DL .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1996, 238 (01) :1-27