Expression modification of uncoupling proteins and MnSOD in retinal endothelial cells and pericytes induced by high glucose: The role of reactive oxygen species in diabetic retinopathy

被引:125
作者
Cui, Yan
Xu, Xun
Bi, Hongsheng
Zhu, Qi
Wu, Hanfeng
Xia, Xin
Ren, Qiushi
Ho, Patrick C. P.
机构
[1] Shanghai First People Hosp, Dept Ophthalmol, Shanghai 200080, Peoples R China
[2] Jinan Shierming Eye Hosp, Jinan 250002, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Biomed Engn, Shanghai 202240, Peoples R China
关键词
diabetic retinopathy; reactive oxygen species; mitochondria; uncoupling proteins; MnSOD;
D O I
10.1016/j.exer.2006.03.024
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Uncoupling proteins (UCPs) are mitochondrial transporters present in the inner membrane of mitochondria. They belong to the family of anion mitochondrial carriers. UCPs could act as proton carriers activated by metabolites and create a shunt between complexes of the respiratory chain and ATP synthase. The increased leakiness of the mitochondrial inner membrane to protons may be to minimize superoxide production by limiting the maximum Delta mu(H+). The purpose of this study was to detect UCP expression in retinal capillary cells and their modification in high levels of glucose. The role of reactive oxygen species (ROS) of mitochondria and UCPs in pathogenesis of diabetic retimipathy was investigated. Bovine retinal capillary endothelial cells and pericytes were cultured with selective culture media, respectively. Passage cells were cultured in three different glucose concentrations (5, 23, 30 mM) until passage four. ROS changes in mitochondria of these cells in different glucose concentrations were detected with scanning laser confocal microscopy (SLCM). The mitochondria membrane potential (Delta psi), cell death rate and apoptosis rate were measured with flowing cytometry. UCP expression in retinal capillary cells was detected by immunocytochemistry. Expression and modification of MnSOD and uncoupling proteins (UCPs) in different concentrations of glucose were detected by means of semi-quantitative RT-PCR. ROS in mitochondria of both endothelial cells and pericytes increased as the glucose concentration of media increased. Alp and cell death rate of endothelial cells increased also. ROS was correlated to Delta psi and cell death rate positively in endothelial cells. No difference in Delta psi and cell death rate among different glucose levels was found in pericytes. Apoptosis rate of endothelial cells and pericytes in high glucose levels was higher than that in lower glucose levels. UCP1 and UCP2 were expressed in cultured retinal capillary cells whereas UCP3 was not. At high levels of glucose, expression of UCP1, UCP2 and MnSOD increased to accommodate ROS production compensatively. The compensative mechanism disappeared when glucose concentration was too high (30 mM). The results of this study showed that increasing mitochondrial ROS could be induced by high glucose concentration. Those proteins related to antioxidation mechanism, such as MnSOD and UCPs, could exert compensative action to a certain extent. This compensative action was insufficient when the glucose concentration was too high. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:807 / 816
页数:10
相关论文
共 26 条
[1]   Uncoupling protein homologs: Emerging views of physiological function [J].
Adams, SH .
JOURNAL OF NUTRITION, 2000, 130 (04) :711-714
[2]   The myeloperoxidase system of human phagocytes generates Nε-(carboxymethyl)lysine on proteins:: a mechanism for producing advances glycation end products at sites of inflammation [J].
Anderson, MM ;
Requena, JR ;
Crowley, JR ;
Thorpe, SR ;
Heinecke, JW .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (01) :103-113
[3]   Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production [J].
Arsenijevic, D ;
Onuma, H ;
Pecqueur, C ;
Raimbault, S ;
Manning, BS ;
Miroux, B ;
Couplan, E ;
Alves-Guerra, MC ;
Goubern, M ;
Surwit, R ;
Bouillaud, F ;
Richard, D ;
Collins, S ;
Ricquier, D .
NATURE GENETICS, 2000, 26 (04) :435-439
[4]   Thiamine and benfotiamine prevent increased apoptosis in endothelial cells and pericytes cultured in high glucose [J].
Beltramo, E ;
Berrone, E ;
Buttiglieri, S ;
Porta, M .
DIABETES-METABOLISM RESEARCH AND REVIEWS, 2004, 20 (04) :330-336
[5]   Biochemistry and molecular cell biology of diabetic complications [J].
Brownlee, M .
NATURE, 2001, 414 (6865) :813-820
[6]  
CAPETANDES A, 1990, INVEST OPHTH VIS SCI, V31, P1738
[7]   Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation [J].
Du, XL ;
Edelstein, D ;
Rossetti, L ;
Fantus, IG ;
Goldberg, H ;
Ziyadeh, F ;
Wu, J ;
Brownlee, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (22) :12222-12226
[8]   Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site [J].
Du, XL ;
Edelstein, D ;
Dimmeler, S ;
Ju, QD ;
Sui, C ;
Brownlee, M .
JOURNAL OF CLINICAL INVESTIGATION, 2001, 108 (09) :1341-1348
[9]   Superoxide activates mitochondrial uncoupling proteins [J].
Echtay, KS ;
Roussel, D ;
St-Pierre, J ;
Jekabsons, MB ;
Cadenas, S ;
Stuart, JA ;
Harper, JA ;
Roebuck, SJ ;
Morrison, A ;
Pickering, S ;
Clapham, JC ;
Brand, MD .
NATURE, 2002, 415 (6867) :96-99
[10]   Superoxide activates mitochondrial uncoupling protein 2 from the matrix side - Studies using targeted antioxidants [J].
Echtay, KS ;
Murphy, MP ;
Smith, RAJ ;
Talbot, DA ;
Brand, MD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (49) :47129-47135