A PDE variational approach to image denoising and restoration

被引:57
作者
Barbu, Tudor [2 ]
Barbu, Viorel [1 ]
Biga, Veronica [3 ]
Coca, Daniel [3 ]
机构
[1] Alexandru Ioan Cuza Univ, Inst Math Octav Mayer, Romanian Acad, Iasi, Romania
[2] Acad Romana, Inst Comp Sci, Iasi, Romania
[3] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S10 2TN, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Image restoration; Convex functions; Sobolev space; Nonlinear diffusion; NONLINEAR DIFFUSION; EDGE-DETECTION; SPACE;
D O I
10.1016/j.nonrwa.2008.01.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss a general variational model for image restoration based on the minimization of a convex functional of gradient under minimal growth conditions. This approach is related to minimization in bounded variation norm and has a smoothing effect on degraded image while preserving the edge features. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1351 / 1361
页数:11
相关论文
共 13 条
[1]  
Adams R.A., 1975, Sobolev Spaces
[2]  
[Anonymous], 1983, SIAM REV
[3]  
Barbu V., 1976, Nonlinear Semigroups and Differential Equations in Banach Spaces
[4]  
BARBU V, 1993, ANAL CONTROL INFINIT
[5]   IMAGE SELECTIVE SMOOTHING AND EDGE-DETECTION BY NONLINEAR DIFFUSION [J].
CATTE, F ;
LIONS, PL ;
MOREL, JM ;
COLL, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (01) :182-193
[6]   Adaptive total variation for image restoration in BV space [J].
Chen, Y ;
Wunderli, T .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :117-137
[7]  
COTTET GH, 1993, MATH COMPUT, V61, P659, DOI 10.1090/S0025-5718-1993-1195422-2
[8]  
Diewald U., 2001, ACTA MATH UNIV COMEN, V70, P15
[9]  
KAEPFLER G, 1994, SIAM J NUMER ANAL, V31, P282
[10]  
Lim J. S., 1990, 2 DIMENSIONAL SIGNAL, P469