Reporter gene insertions reveal a strictly B lymphoid-specific expression pattern of Pax5 in support of its B cell identity function

被引:46
作者
Fuxa, Martin [1 ]
Busslinger, Meinrad [1 ]
机构
[1] Vienna Bioctr, Res Inst Mol Pathol, A-1030 Vienna, Austria
关键词
D O I
10.4049/jimmunol.178.5.3031
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The transcription factor Pax5 is essential for B cell commitment and development. Although the detailed Pax5 expression pattern within the hemopoietic system is still largely unknown, we previously reported that Pax5 is monoallelically transcribed in pro-B and mature B cells. In this study, we have investigated the expression of Pax5 at single-cell resolution by inserting a GFP or human cd2 indicator gene under the translational control of an internal ribosomal entry site element into the 3' untranslated region of Pax5. These insertions were noninvasive, as B cell development was normal in Pax5(ihCd2/ihCd2) and Pax5(iGFP/iGFP) mice. Transheterozygous Pax5(ihCd2/iGFP) mice coexpressed GFP and human CD2 at similar levels from pro-B to mature B cells, thus demonstrating biallelic expression of Pax5 at all stages of B cell development. No reporter gene expression could be detected in plasma cells and non-B cells of the hemopoietic system. Moreover, the vast majority of common lymphoid progenitors and pre-pro-B cells in the bone marrow Pax5(iGFP/iGFP) mice did not yet express GFP, indicating that Pax5 expression is fully switched on only during the transition from uncommitted pre-pro-B cells to committed pro-B cells. Hence, the transcriptional initiation and B cell-specific expression of Pax5 is entirely consistent with its B cell lineage commitment function.
引用
收藏
页码:3031 / 3037
页数:7
相关论文
共 45 条
[1]   PAX-5 ENCODES THE TRANSCRIPTION FACTOR BSAP AND IS EXPRESSED IN LYMPHOCYTES-B, THE DEVELOPING CNS, AND ADULT TESTIS [J].
ADAMS, B ;
DORFLER, P ;
AGUZZI, A ;
KOZMIK, Z ;
URBANEK, P ;
MAURERFOGY, I ;
BUSSLINGER, M .
GENES & DEVELOPMENT, 1992, 6 (09) :1589-1607
[2]   Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential:: A revised road map for adult blood lineage commitment [J].
Adolfsson, J ;
Månsson, R ;
Buza-Vidas, N ;
Hultquist, A ;
Liuba, K ;
Jensen, CT ;
Bryder, D ;
Yang, LP ;
Borge, OJ ;
Thoren, LAM ;
Anderson, K ;
Sitnicka, E ;
Sasaki, Y ;
Sigvardsson, M ;
Jacobsen, SEW .
CELL, 2005, 121 (02) :295-306
[3]   Thymopoiesis independent of common lymphoid progenitors [J].
Allman, D ;
Sambandam, A ;
Kim, S ;
Miller, JP ;
Pagan, A ;
Well, D ;
Meraz, A ;
Bhandoola, A .
NATURE IMMUNOLOGY, 2003, 4 (02) :168-174
[4]   Frontline:: A B220+ CD117+ CD19- hematopoietic progenitor with potent lymphoid and myeloid developmental potential [J].
Balciunaite, G ;
Ceredig, R ;
Massa, S ;
Rolink, AG .
EUROPEAN JOURNAL OF IMMUNOLOGY, 2005, 35 (07) :2019-2030
[5]   A NOVEL B-CELL LINEAGE-SPECIFIC TRANSCRIPTION FACTOR PRESENT AT EARLY BUT NOT LATE STAGES OF DIFFERENTIATION [J].
BARBERIS, A ;
WIDENHORN, K ;
VITELLI, L ;
BUSSLINGER, M .
GENES & DEVELOPMENT, 1990, 4 (05) :849-859
[6]   The mechanism and regulation of chromosomal V(D)J recombination [J].
Bassing, CH ;
Swat, W ;
Alt, FW .
CELL, 2002, 109 :S45-S55
[7]   Independent and epigenetic regulation of the interleukin-4 alleles in CD4+ T cells [J].
Bix, M ;
Locksley, RM .
SCIENCE, 1998, 281 (5381) :1352-1354
[8]  
BOUCHARD M, 2003, NATURE ENCY HUMAN GE, V4, P527
[9]   Transcriptional control of early B cell development [J].
Busslinger, M .
ANNUAL REVIEW OF IMMUNOLOGY, 2004, 22 :55-79
[10]   ALLELIC INACTIVATION REGULATES OLFACTORY RECEPTOR GENE-EXPRESSION [J].
CHESS, A ;
SIMON, I ;
CEDAR, H ;
AXEL, R .
CELL, 1994, 78 (05) :823-834