The Variegated Mutants Lacking Chloroplastic FtsHs Are Defective in D1 Degradation and Accumulate Reactive Oxygen Species

被引:159
作者
Kato, Yusuke [1 ]
Miura, Eiko [1 ]
Ido, Kunio [2 ]
Ifuku, Kentaro [2 ]
Sakamoto, Wataru [1 ]
机构
[1] Okayama Univ, Bioresources Res Inst, Okayama 7100046, Japan
[2] Kyoto Univ, Grad Sch Biostudies, Kyoto 6068502, Japan
关键词
SYNECHOCYSTIS-SP PCC-6803; PHOTOSYSTEM-II REPAIR; ATP-DEPENDENT PROTEASE; THYLAKOID MEMBRANE; LEAF VARIEGATION; IN-VIVO; ARABIDOPSIS-THALIANA; YELLOW VARIEGATED2; HYDROGEN-PEROXIDE; OXIDATIVE STRESS;
D O I
10.1104/pp.109.146589
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In the photosynthetic apparatus, a major target of photodamage is the D1 reaction center protein of photosystem II (PSII). Photosynthetic organisms have developed a PSII repair cycle in which photodamaged D1 is selectively degraded. A thylakoid membrane-bound metalloprotease, FtsH, was shown to play a critical role in this process. Here, the effect of FtsHs in D1 degradation was investigated in Arabidopsis (Arabidopsis thaliana) mutants lacking FtsH2 (yellow variegated2 [var2]) or FtsH5 (var1). Because these mutants are characterized by variegated leaves that sometimes complicate biochemical studies, we employed another mutation, fu-gaeri1 (fug1), that suppresses leaf variegation in var1 and var2 to examine D1 degradation. Two-dimensional blue native PAGE showed that var2 has less PSII supercomplex and more PSII intermediate lacking CP43, termed RC47, than the wild type under normal growth light. Moreover, our histochemical and quantitative analyses revealed that chloroplasts in var2 accumulate significant levels of reactive oxygen species, such as superoxide radical and hydrogen peroxide. These results indicate that the lack of FtsH2 leads to impaired D1 degradation at the step of RC47 formation in PSII repair and to photooxidative stress even under nonphotoinhibitory conditions. Our in vivo D1 degradation assays, carried out by nonvariegated var2 fug1 and var1 fug1 leaves, demonstrated that D1 degradation was impaired in different light conditions. Taken together, our results suggest the important role of chloroplastic FtsHs, which was not precisely examined in vivo. Attenuated D1 degradation in the nonvariegated mutants also suggests that leaf variegation seems to be independent of the PSII repair.
引用
收藏
页码:1790 / 1801
页数:12
相关论文
共 52 条
[1]   Reactive oxygen species: Metabolism, oxidative stress, and signal transduction [J].
Apel, K ;
Hirt, H .
ANNUAL REVIEW OF PLANT BIOLOGY, 2004, 55 :373-399
[2]   PHOTOINHIBITION OF PHOTOSYSTEM-2 - INACTIVATION, PROTEIN DAMAGE AND TURNOVER [J].
ARO, EM ;
VIRGIN, I ;
ANDERSSON, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1143 (02) :113-134
[3]   Production and scavenging of reactive oxygen species in chloroplasts and their functions [J].
Asada, Kozi .
PLANT PHYSIOLOGY, 2006, 141 (02) :391-396
[4]   Biogenesis, assembly and turnover of photosystem II units [J].
Baena-González, E ;
Aro, EM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2002, 357 (1426) :1451-1459
[5]   A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem II repair cycle in vivo [J].
Bailey, S ;
Thompson, E ;
Nixon, PJ ;
Horton, P ;
Mullineaux, CW ;
Robinson, C ;
Mann, NH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (03) :2006-2011
[6]   Chlorophyll fluorescence: A probe of photosynthesis in vivo [J].
Baker, Neil R. .
ANNUAL REVIEW OF PLANT BIOLOGY, 2008, 59 :89-113
[7]   TOO MUCH OF A GOOD THING - LIGHT CAN BE BAD FOR PHOTOSYNTHESIS [J].
BARBER, J ;
ANDERSSON, B .
TRENDS IN BIOCHEMICAL SCIENCES, 1992, 17 (02) :61-66
[8]   The Deg proteases protect Synechocystis sp PCC 6803 during heat and light stresses but are not essential for removal of damaged D1 protein during the photosystem two repair cycle [J].
Barker, Myles ;
de Vries, Remco ;
Nield, Jon ;
Komenda, Josef ;
Nixon, Peter J. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (41) :30347-30355
[9]   Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases [J].
Bonardi, V ;
Pesaresi, P ;
Becker, T ;
Schleiff, E ;
Wagner, R ;
Pfannschmidt, T ;
Jahns, P ;
Leister, D .
NATURE, 2005, 437 (7062) :1179-1182
[10]   Mutations in the Arabidopsis VAR2 locus cause leaf variegation due to the loss of a chloroplast FtsH protease [J].
Chen, M ;
Choi, YD ;
Voytas, DF ;
Rodermel, S .
PLANT JOURNAL, 2000, 22 (04) :303-313