Interactions between heterologous forms of prion protein: Binding, inhibition of conversion, and species barriers

被引:131
作者
Horiuchi, M
Priola, SA
Chabry, J
Caughey, B
机构
[1] NIAID, Lab Persistant Viral Dis, Rocky Mt Labs, NIH, Hamilton, ON 59840, Canada
[2] Obihiro Univ Agr & Vet Med, Dept Vet Publ Hlth, Obihiro, Hokkaido 0808555, Japan
[3] Obihiro Univ Agr & Vet Med, Res Ctr Protozoan Mol Immunol, Obihiro, Hokkaido 0808555, Japan
关键词
D O I
10.1073/pnas.110523897
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The self-induced formation of the disease-associated, protease-resistant prion protein (PrP-res) from the normal protease-sensitive isoform (PrP-sen) appears to be a key event in the pathogenesis of transmissible spongiform encephalopathies. The amino acid sequence specificity of PrP-res formation correlates with, and may account for, the species specificity in transmission of transmissible spongiform encephalopathy agents in vivo. To analyze the mechanism controlling the sequence specificity of PrP-res formation, we compared the binding of PrP-sen to PrP-res with its subsequent acquisition of protease resistance by using cell-free systems consisting of heterologous versus homologous mouse and hamster PrP isoforms, Our studies showed that heterologous PrP-sen can bind to PrP-res with little conversion to the protease-resistant state and, in doing so, can interfere with the conversion of homologous PrP-sen, The interference occurred with molar ratios of homologous to heterologous PrP-sen molecules as low as 1:1. The interference was due primarily to the inhibition of conversion, but not the binding, of the homologous PrP-sen to PrP-res, The results provide evidence that the sequence specificity of PrP-res formation in this model is determined more by the conversion to protease resistance than by the initial binding step. These findings also imply that after the initial binding, further intermolecular interactions between PrP-sen and PrP-res are required to complete the process of conversion to the protease-resistant state.
引用
收藏
页码:5836 / 5841
页数:6
相关论文
共 35 条
[1]   NONGENETIC PROPAGATION OF STRAIN-SPECIFIC PROPERTIES OF SCRAPIE PRION PROTEIN [J].
BESSEN, RA ;
KOCISKO, DA ;
RAYMOND, GJ ;
NANDAN, S ;
LANSBURY, PT ;
CAUGHEY, B .
NATURE, 1995, 375 (6533) :698-700
[2]   Prion protein NMR structure and species barrier for prion diseases [J].
Billeter, M ;
Riek, R ;
Wider, G ;
Hornemann, S ;
Glockshuber, R ;
Wuthrich, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (14) :7281-7285
[3]   SCRAPIE AND CELLULAR PRION PROTEINS DIFFER IN THEIR KINETICS OF SYNTHESIS AND TOPOLOGY IN CULTURED-CELLS [J].
BORCHELT, DR ;
SCOTT, M ;
TARABOULOS, A ;
STAHL, N ;
PRUSINER, SB .
JOURNAL OF CELL BIOLOGY, 1990, 110 (03) :743-752
[4]   Transmissions to mice indicate that 'new variant' CJD is caused by the BSE agent [J].
Bruce, ME ;
Will, RG ;
Ironside, JW ;
McConnell, I ;
Drummond, D ;
Suttie, A ;
McCardle, L ;
Chree, A ;
Hope, J ;
Birkett, C ;
Cousens, S ;
Fraser, H ;
Bostock, CJ .
NATURE, 1997, 389 (6650) :498-501
[5]   MICE DEVOID OF PRP ARE RESISTANT TO SCRAPIE [J].
BUELER, H ;
AGUZZI, A ;
SAILER, A ;
GREINER, RA ;
AUTENRIED, P ;
AGUET, M ;
WEISSMANN, C .
CELL, 1993, 73 (07) :1339-1347
[6]  
CAUGHEY B, 1991, J BIOL CHEM, V266, P18217
[7]   N-TERMINAL TRUNCATION OF THE SCRAPIE-ASSOCIATED FORM OF PRP BY LYSOSOMAL PROTEASE(S) - IMPLICATIONS REGARDING THE SITE OF CONVERSION OF PRP TO THE PROTEASE-RESISTANT STATE [J].
CAUGHEY, B ;
RAYMOND, GJ ;
ERNST, D ;
RACE, RE .
JOURNAL OF VIROLOGY, 1991, 65 (12) :6597-6603
[8]   Scrapie infectivity correlates with converting activity, protease resistance, and aggregation of scrapie-associated prion protein in guanidine denaturation studies [J].
Caughey, B ;
Raymond, GJ ;
Kocisko, DA ;
Lansbury, PT .
JOURNAL OF VIROLOGY, 1997, 71 (05) :4107-4110
[9]   Aggregates of scrapie-associated prion protein induce the cell-free conversion of protease-sensitive prion protein to the protease-resistant state [J].
Caughey, B ;
Kocisko, DA ;
Raymond, GJ ;
Lansbury, PT .
CHEMISTRY & BIOLOGY, 1995, 2 (12) :807-817
[10]   Prion protein and the transmissible spongiform encephalopathies [J].
Caughey, B ;
Chesebro, B .
TRENDS IN CELL BIOLOGY, 1997, 7 (02) :56-62