The DecNef collection, fMRI data from closed-loop decoded neurofeedback experiments

被引:13
作者
Cortese, Aurelio [1 ]
Tanaka, Saori C. [1 ]
Amano, Kaoru [1 ,2 ]
Koizumi, Ai [1 ,2 ,3 ]
Lau, Hakwan [1 ,4 ,5 ,6 ,7 ]
Sasaki, Yuka [1 ,8 ]
Shibata, Kazuhisa [1 ,9 ]
Taschereau-Dumouchel, Vincent [1 ,4 ]
Watanabe, Takeo [1 ,8 ]
Kawato, Mitsuo [1 ,10 ]
机构
[1] ATR Inst Int, Computat Neurosci Labs, Kyoto 6190288, Japan
[2] Natl Inst Informat & Commun Technol, Ctr Informat & Neural Networks CiNet, Suita, Osaka 5650871, Japan
[3] Sony Comp Sci Labs Inc, Tokyo 1410022, Japan
[4] Univ Calif Los Angeles, Dept Psychol, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Brain Res Inst, Los Angeles, CA 90095 USA
[6] Univ Hong Kong, Dept Psychol, Hong Kong, Peoples R China
[7] Univ Hong Kong, State Key Lab Brain & Cognit Sci, Hong Kong, Peoples R China
[8] Brown Univ, Dept Cognit Linguist & Psychol Sci, Providence, RI 02912 USA
[9] RIKEN, Ctr Brain Sci, Wako, Saitama 3510198, Japan
[10] RIKEN, Ctr Adv Intelligence Project, Kyoto 6190288, Japan
基金
美国国家卫生研究院;
关键词
D O I
10.1038/s41597-021-00845-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Decoded neurofeedback (DecNef) is a form of closed-loop functional magnetic resonance imaging (fMRI) combined with machine learning approaches, which holds some promises for clinical applications. Yet, currently only a few research groups have had the opportunity to run such experiments; furthermore, there is no existing public dataset for scientists to analyse and investigate some of the factors enabling the manipulation of brain dynamics. We release here the data from published DecNef studies, consisting of 5 separate fMRI datasets, each with multiple sessions recorded per participant. For each participant the data consists of a session that was used in the main experiment to train the machine learning decoder, and several (from 3 to 10) closed-loop fMRI neural reinforcement sessions. The large dataset, currently comprising more than 60 participants, will be useful to the fMRI community at large and to researchers trying to understand the mechanisms underlying non-invasive modulation of brain dynamics. Finally, the data collection size will increase over time as data from newly run DecNef studies will be added.
引用
收藏
页数:9
相关论文
共 30 条
[1]   Learning to Associate Orientation with Color in Early Visual Areas by Associative Decoded fMRI Neurofeedback [J].
Amano, Kaoru ;
Shibata, Kazuhisa ;
Kawato, Mitsuo ;
Sasaki, Yuka ;
Watanabe, Takeo .
CURRENT BIOLOGY, 2016, 26 (14) :1861-1866
[2]   A technique for the deidentification of structural brain MR images [J].
Bischoff-Grethe, Amanda ;
Ozyurt, I. Burak ;
Busa, Evelina ;
Quinn, Brian T. ;
Fennema-Notestine, Christine ;
Clark, Camellia P. ;
Morris, Shaunna ;
Bondi, Mark W. ;
Jernigan, Terry L. ;
Dale, Anders M. ;
Brown, Gregory G. ;
Fischl, Bruce .
HUMAN BRAIN MAPPING, 2007, 28 (09) :892-903
[3]   Current Status of Neurofeedback for Post-traumatic Stress Disorder: A Systematic Review and the Possibility of Decoded Neurofeedback [J].
Chiba, Toshinori ;
Kanazawa, Tetsufumi ;
Koizumi, Ai ;
Ide, Kentarou ;
Taschereau-Dumouchel, Vincent ;
Boku, Shuken ;
Hishimoto, Akitoyo ;
Shirakawa, Miyako ;
Sora, Ichiro ;
Lau, Hakwan ;
Yoneda, Hiroshi ;
Kawato, Mitsuo .
FRONTIERS IN HUMAN NEUROSCIENCE, 2019, 13
[4]  
Cortese A, 2020, SYNAPSE, DOI [10.7303/syn23530650, DOI 10.7303/SYN23530650]
[5]   The neural and cognitive architecture for learning from a small sample [J].
Cortese, Aurelio ;
De Martino, Benedetto ;
Kawato, Mitsuo .
CURRENT OPINION IN NEUROBIOLOGY, 2019, 55 :133-141
[6]   Decoded fMRI neurofeedback can induce bidirectional confidence changes within single participants [J].
Cortese, Aurelio ;
Amano, Kaoru ;
Koizumi, Ai ;
Lau, Hakwan ;
Kawato, Mitsuo .
NEUROIMAGE, 2017, 149 :323-337
[7]   Multivoxel neurofeedback selectively modulates confidence without changing perceptual performance [J].
Cortese, Aurelio ;
Amano, Kaoru ;
Koizumi, Ai ;
Kawato, Mitsuo ;
Lau, Hakwan .
NATURE COMMUNICATIONS, 2016, 7
[8]   Meta-analysis of real-time fMRI neurofeedback studies using individual participant data: How is brain regulation mediated? [J].
Emmert, Kirsten ;
Kopel, Rotem ;
Sulzer, James ;
Bruehl, Annette B. ;
Berman, Brian D. ;
Linden, David E. J. ;
Horovitz, Silvina G. ;
Breimhorst, Markus ;
Caria, Andrea ;
Frank, Sabine ;
Johnston, Stephen ;
Long, Zhiying ;
Paret, Christian ;
Robineau, Fabien ;
Veit, Ralf ;
Bartsch, Andreas ;
Beckmann, Christian F. ;
Van De Ville, Dimitri ;
Haller, Sven .
NEUROIMAGE, 2016, 124 :806-812
[9]   Can we predict real-timefMRIneurofeedback learning success from pretraining brain activity? [J].
Haugg, Amelie ;
Sladky, Ronald ;
Skouras, Stavros ;
McDonald, Amalia ;
Craddock, Cameron ;
Kirschner, Matthias ;
Herdener, Marcus ;
Koush, Yury ;
Papoutsi, Marina ;
Keynan, Jackob N. ;
Hendler, Talma ;
Cohen Kadosh, Kathrin ;
Zich, Catharina ;
MacInnes, Jeff ;
Adcock, Alison ;
Dickerson, Kathryn ;
Chen, Nan-Kuei ;
Young, Kymberly ;
Bodurka, Jerzy ;
Yao, Shuxia ;
Becker, Benjamin ;
Auer, Tibor ;
Schweizer, Renate ;
Pamplona, Gustavo ;
Emmert, Kirsten ;
Haller, Sven ;
van de Ville, Dimitri ;
Blefari, Maria-Laura ;
Kim, Dong-Youl ;
Lee, Jong-Hwan ;
Marins, Theo ;
Fukuda, Megumi ;
Sorger, Bettina ;
Kamp, Tabea ;
Liew, Sook-Lei ;
Veit, Ralf ;
Spetter, Maartje ;
Weiskopf, Nikolaus ;
Scharnowski, Frank .
HUMAN BRAIN MAPPING, 2020, 41 (14) :3839-3854
[10]   A Common, High-Dimensional Model of the Representational Space in Human Ventral Temporal Cortex [J].
Haxby, James V. ;
Guntupalli, J. Swaroop ;
Connolly, Andrew C. ;
Halchenko, Yaroslav O. ;
Conroy, Bryan R. ;
Gobbini, M. Ida ;
Hanke, Michael ;
Ramadge, Peter J. .
NEURON, 2011, 72 (02) :404-416