Topological shocks in Burgers turbulence

被引:14
作者
Bec, J
Iturriaga, R
Khanin, K
机构
[1] Observ Cote Azur, Lab GD CAssini, F-06304 Nice 4, France
[2] Ctr Invest Matemat, Guanajuato 36000, Mexico
[3] Isaac Newton Inst Math Sci, Cambridge CB3 0EH, England
[4] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[5] LD Landau Theoret Phys Inst, Moscow 117332, Russia
关键词
Boundary conditions - Hamiltonians - Navier Stokes equations - Shock waves - Topology - Viscosity;
D O I
10.1103/PhysRevLett.89.024501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The dynamics of the multidimensional randomly forced Burgers equation is studied in the limit of vanishing viscosity. It is shown both theoretically and numerically that the shocks have a universal global structure which is determined by the topology of the configuration space. This structure is shown to be particularly rigid for the case of periodic boundary conditions.
引用
收藏
页码:245011 / 245014
页数:4
相关论文
共 21 条
[1]  
ANISOV S, 2000, NI00037SGT
[2]   Kicked Burgers turbulence [J].
Bec, J ;
Frisch, U ;
Khanin, K .
JOURNAL OF FLUID MECHANICS, 2000, 416 :239-267
[3]   Universality of velocity gradients in forced Burgers turbulence [J].
Bec, M .
PHYSICAL REVIEW LETTERS, 2001, 87 (10)
[4]   KOLMOGOROV TURBULENCE IN A RANDOM-FORCE-DRIVEN BURGERS-EQUATION [J].
CHEKHLOV, A ;
YAKHOT, V .
PHYSICAL REVIEW E, 1995, 51 (04) :R2739-R2742
[5]  
E WN, 1999, PHYS REV LETT, V83, P2572, DOI 10.1103/PhysRevLett.83.2572
[6]  
Frisch U., 2001, NATO Advanced Study Institute. Les Houches Session LXXIV. New Trends in Turbulence. Turbulence: Nouveaux Aspects, P341
[7]   Singularities and the distribution of density in the Burgers/adhesion model [J].
Frisch, U ;
Bec, J ;
Villone, B .
PHYSICA D-NONLINEAR PHENOMENA, 2001, 152 :620-635
[8]  
ITURRIAGA R, IN PRESS BURGERS TUR
[9]  
ITURRIAGA R, 2001, P 3 EUR C MATH BARC
[10]   DYNAMIC SCALING OF GROWING INTERFACES [J].
KARDAR, M ;
PARISI, G ;
ZHANG, YC .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :889-892