Confinement studies of auxiliary heated NSTX plasmas

被引:35
作者
LeBlanc, BP
Bell, RE
Kaye, SM
Stutman, D
Bell, MG
Bitter, ML
Bourdelle, C
Gates, DA
Maingi, R
Medley, SS
Menard, JE
Mueller, D
Paul, SR
Roquemore, AL
Rosenberg, A
Sabbagh, SA
Soukhanovskii, VA
Synakowski, EJ
Wilson, JR
机构
[1] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[2] CEA Cadarache, DRFC, St Paul Les Durance, France
[3] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA
[4] Columbia Univ, Dept Appl Phys, New York, NY 10027 USA
[5] Johns Hopkins Univ, Baltimore, MD USA
关键词
D O I
10.1088/0029-5515/44/4/005
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The confinement of auxiliary heated national spherical torus experiment discharges is discussed. From a database analysis, it is found that the energy confinement time in NBI heated plasmas with either L- or H-modes edge is up to 2.5 times the values predicted by theITER97L scaling. A high power NBI heated H-mode discharge is discussed in detail. TRANSP calculations based on the kinetic profile measurements reproduce well the magnetically determined stored energy, but overestimate the measured neutron rate by 30%. Power balance calculations reveal that the ion thermal transport is above or near neoclassical levels, and significantly below the electron thermal transport, which constitutes the main power loss channel. Perturbative impurity injection techniques indicate the particle diffusivity is slightly above the neoclassical level in discharges with L-mode edge. High-harmonic fast-wave (HHFW) bulk electron heating is described and thermal transport is discussed. Thermal ion transport is found to be above the neoclassical level, and thermal electron transport remains the main loss mechanism. Evidence of an electron thermal internal transport barrier obtained with HHFW heating is presented. A description of H-mode discharges obtained during HHFW heating is made.
引用
收藏
页码:513 / 523
页数:11
相关论文
共 33 条
[1]  
BELL RE, 2003, LPI B AM PHYS SOC, V48, P217
[2]   Imaging x-ray crystal spectrometers for the National Spherical Torus Experiment [J].
Bitter, M ;
Hill, KW ;
Roquemore, AL ;
Beiersdorfer, P ;
Kahn, SM ;
Elliott, SR ;
Fraenkel, B .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70 (01) :292-295
[3]   Stabilizing impact of high gradient of β on microturbulence [J].
Bourdelle, C ;
Dorland, W ;
Garbet, X ;
Hammett, GW ;
Kotschenreuther, M ;
Rewoldt, G ;
Synakowski, EJ .
PHYSICS OF PLASMAS, 2003, 10 (07) :2881-2887
[4]  
BOURDELLE C, 2001, P 2 IAEA TECHN COMM
[5]  
GATES DA, PHYS REV LETT, V87
[6]   EFFECTS OF NEUTRAL BEAM INJECTION ON POLOIDAL ROTATION AND ENERGY-TRANSPORT IN TOKAMAKS [J].
HINTON, FL ;
KIM, YB .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (08) :3012-3020
[7]   Bootstrap current and neoclassical transport in tokamaks of arbitrary collisionality and aspect ratio [J].
Houlberg, WA ;
Shaing, KC ;
Hirshman, SP ;
Zarnstorff, MC .
PHYSICS OF PLASMAS, 1997, 4 (09) :3230-3242
[8]   NUMERICAL-STUDIES OF IMPURITIES IN FUSION PLASMAS [J].
HULSE, RA .
NUCLEAR TECHNOLOGY-FUSION, 1983, 3 (02) :259-272
[9]  
JOHNSON DW, 2002, GERM POL EURO C PLAS
[10]  
KADOMTSEV BB, 1992, TOKAMAK PLASMA COMPL, P147