Glucocorticoid receptor impairment alters CNS responses to a psychological stressor:: an in vivo microdialysis study in transgenic mice

被引:83
作者
Linthorst, ACE
Flachskamm, C
Barden, N
Holsboer, F
Reul, JMHM
机构
[1] Max Planck Inst Psychiat, Sect Neuropsychopharmacol, D-80804 Munich, Germany
[2] CHU Laval, Res Ctr, Neurosci Res Sect, St Foy, PQ G1V 4G2, Canada
[3] Univ Laval, Dept Physiol, St Foy, PQ G1V 4G2, Canada
关键词
5-hydroxyindoleacetic acid; behavioural activity; free corticosterone; hippocampus; serotonin;
D O I
10.1046/j.1460-9568.2000.00878.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
To study the consequences of impaired functioning of the glucocorticoid receptor (GR) for behavioural, neuroendocrine and neurochemical responses to a psychological stressor, a transgenic mouse expressing antisense RNA against GR was used. Previous studies on these transgenic mice have shown that impairment of GR evolves in disturbed neuroendocrine regulation and certain behavioural responses to stress. Here we investigated putative disturbances on the level of brain neurotransmission in GR-impaired (GR-i) mice using an in vivo microdialysis method. Through a microdialysis probe in the hippocampus, serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) and free corticosterone [as an index of hypothalamic-pituitary-adrenocortical (HPA) axis activity] were monitored. Moreover, specific behaviours (e.g. grooming, eating/drinking, sniffing, nest building and locomotion) displayed by the mice during collection of the dialysates were scored. Measurement of dialysate concentrations of corticosterone on days 1 and 3 after insertion of the microdialysis probe showed that the free levels of this glucocorticoid were significantly lower in GR-i mice toward the evening. On day 2 after insertion of the microdialysis probe, baseline values of dialysate corticosterone, 5-HT and 5-HIAA were assessed, after which mice were exposed to a rat placed into their home cage. The rat and mouse were separated by a Plexiglas wall. A positive correlation between baseline hippocampal extracellular levels of 5-HT and 5-HIAA and the time spent performing active behaviours was observed in both genotypes. The main active behaviour performed at the baseline was grooming behaviour. During the rat exposure period, control mice remained mostly sitting and/or lying with their eyes fixed on the rat. Moreover, they showed a profound rise in free corticosterone levels. In contrast, GR-i mice displayed significantly more activities along the separation wall and a trend toward more grooming behaviour, but no increase of free corticosterone. In both mouse lines, exposure to a rat increased hippocampal extracellular levels of 5-HT and 5-HIAA. The rise in 5-HT was, however, more pronounced in the GR-i mice. From these data it may be concluded that life-long GR impairment has profound consequences for behavioural and neuroendocrine responses to a psychological stressor. Moreover, long-term impaired functioning of GR evolves in hyper-responsiveness of the raphe-hippocampal serotonergic system.
引用
收藏
页码:283 / 291
页数:9
相关论文
共 44 条
[1]   Comparative study in the rat of the actions of different types of stress on the release of 5-HT in raphe nuclei and forebrain areas [J].
Adell, A ;
Casanovas, JM ;
Artigas, F .
NEUROPHARMACOLOGY, 1997, 36 (4-5) :735-741
[2]   Escapable and inescapable stress differentially and selectively alter extracellular levels of 5-HT in the ventral hippocampus and dorsal periaqueductal gray of the rat [J].
Amat, J ;
Matus-Amat, P ;
Watkins, LR ;
Maier, SF .
BRAIN RESEARCH, 1998, 797 (01) :12-22
[3]   INCREASE OF TRYPTOPHAN-HYDROXYLASE ENZYME PROTEIN BY DEXAMETHASONE IN ADRENALECTOMIZED RAT MIDBRAIN [J].
AZMITIA, EC ;
LIAO, BL ;
CHEN, YS .
JOURNAL OF NEUROSCIENCE, 1993, 13 (12) :5041-5055
[4]   Endocrine profile and neuroendocrine challenge tests in transgenic mice expressing antisense RNA against the glucocorticoid receptor [J].
Barden, N ;
Stec, ISM ;
Montkowski, A ;
Holsboer, F ;
Reul, JMHM .
NEUROENDOCRINOLOGY, 1997, 66 (03) :212-220
[5]   DO ANTIDEPRESSANTS STABILIZE MOOD THROUGH ACTIONS ON THE HYPOTHALAMIC-PITUITARY-ADRENOCORTICAL SYSTEM [J].
BARDEN, N ;
REUL, JMHM ;
HOLSBOER, F .
TRENDS IN NEUROSCIENCES, 1995, 18 (01) :6-11
[6]   Benzodiazepine and serotonergic modulation of antipredator and conspecific defense [J].
Blanchard, DC ;
Griebel, G ;
Rodgers, RJ ;
Blanchard, RJ .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 1998, 22 (05) :597-612
[7]   PHYSIOPHARMACOLOGICAL INTERACTIONS BETWEEN STRESS HORMONES AND CENTRAL SEROTONERGIC SYSTEMS [J].
CHAOULOFF, F .
BRAIN RESEARCH REVIEWS, 1993, 18 (01) :1-32
[8]  
DALLMAN MF, 1987, RECENT PROG HORM RES, V43, P113
[9]   ANTIGLUCOCORTICOID RU-38486 ATTENUATES RETENTION OF A BEHAVIOR AND DISINHIBITS THE HYPOTHALAMIC-PITUITARY ADRENAL AXIS AT DIFFERENT BRAIN SITES [J].
DEKLOET, ER ;
DEKOCK, S ;
SCHILD, V ;
VELDHUIS, HD .
NEUROENDOCRINOLOGY, 1988, 47 (02) :109-115
[10]   FEEDBACK ACTION AND TONIC INFLUENCE OF CORTICOSTEROIDS ON BRAIN-FUNCTION - A CONCEPT ARISING FROM THE HETEROGENEITY OF BRAIN RECEPTOR SYSTEMS [J].
DEKLOET, ER ;
REUL, JMHM .
PSYCHONEUROENDOCRINOLOGY, 1987, 12 (02) :83-105