Nonlinear control and online optimization of the burn condition in ITER via heating, isotopic fueling and impurity injection

被引:13
作者
Boyer, Mark D. [1 ]
Schuster, Eugenio [1 ]
机构
[1] Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA
关键词
burn control; nonlinear control; adaptive control; ARTIFICIAL NEURAL-NETWORKS; EXPERIMENTAL REACTOR; TOKAMAK REACTOR; STABILIZATION; UNCERTAINTIES; SYSTEMS; PLASMAS;
D O I
10.1088/0741-3335/56/10/104004
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The ITER tokamak, the next experimental step toward the development of nuclear fusion reactors, will explore the burning plasma regime in which the plasma temperature is sustained mostly by fusion heating. Regulation of the fusion power through modulation of fueling and external heating sources, referred to as burn control, is one of the fundamental problems in burning plasma research. Active control will be essential for achieving and maintaining desired operating points, responding to changing power demands, and ensuring stable operation. Most existing burn control efforts use either non-model-based control techniques or designs based on linearized models. These approaches must be designed for particular operating points and break down for large perturbations. In this work, we utilize a spatially averaged (zero-dimensional) nonlinear model to synthesize a multi-variable nonlinear burn control strategy that can reject large perturbations and move between operating points. The controller uses all of the available actuation techniques in tandem to ensure good performance, even if one or more of the actuators saturate. Adaptive parameter estimation is used to improve the model parameter estimates used by the feedback controller in real-time and ensure asymptotic tracking of the desired operating point. In addition, we propose the use of a model-based online optimization algorithm to drive the system to a state that minimizes a given cost function, while respecting input and state constraints. A zero-dimensional simulation study is presented to show the performance of the adaptive control scheme and the optimization scheme with a cost function weighting the fusion power and temperature tracking errors.
引用
收藏
页数:21
相关论文
共 38 条
[1]   Adaptive output feedback extremum seeking receding horizon control of linear systems [J].
Adetola, V ;
Guay, M .
JOURNAL OF PROCESS CONTROL, 2006, 16 (05) :521-533
[2]   STUDIES OF FUSION BURN CONTROL [J].
ANDERSON, D ;
ELEVANT, T ;
HAMNEN, H ;
LISAK, M ;
PERSSON, H .
FUSION TECHNOLOGY, 1993, 23 (01) :5-41
[3]   Tritium recycling and retention in JET [J].
Andrew, P ;
Brennan, D ;
Coad, JP ;
Ehrenberg, J ;
Gadeberg, M ;
Gibson, A ;
Groth, M ;
How, J ;
Jarvis, ON ;
Jensen, H ;
Lässer, R ;
Marcus, F ;
Monk, R ;
Morgan, P ;
Orchard, J ;
Peacock, A ;
Pearce, R ;
Pick, M ;
Rossi, A ;
Schunke, B ;
Stamp, M ;
von Hellermann, M ;
Hillis, DL ;
Hogan, J .
JOURNAL OF NUCLEAR MATERIALS, 1999, 266 (266) :153-159
[4]  
[Anonymous], 1995, NONLINEAR ADAPTIVE C
[5]  
[Anonymous], 2010, FUSION INTRO PHYS TE, DOI [10.1002/9783527629312, DOI 10.1002/9783527629312]
[6]   Neutron spectrometer for DD/DT burning ratio measurement in fusion experimental reactor [J].
Asai, Keisuke ;
Naoi, Norihiro ;
Iguchi, Tetsuo ;
Watanabe, Kenichi ;
Kawarabayashi, Jun ;
Nishitani, Takeo .
JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2006, 43 (04) :320-324
[7]   DYNAMIC BURN CONTROL OF A TOKAMAK REACTOR BY FUEL-INJECTION [J].
ASHBY, DETF ;
HUGHES, MH .
NUCLEAR FUSION, 1980, 20 (04) :451-457
[8]   Pellet fuelling and control of burning plasmas in ITER [J].
Baylor, L. R. ;
Parks, P. B. ;
Jernigan, T. C. ;
Caughman, J. B. ;
Combs, S. K. ;
Foust, C. R. ;
Houlberg, W. A. ;
Maruyama, S. ;
Rasmussen, D. A. .
NUCLEAR FUSION, 2007, 47 (05) :443-448
[9]  
BOYER M. D., 2014, P 19 WORLD C INT FED
[10]  
Boyer MD, 2011, IEEE INTL CONF CONTR, P246, DOI 10.1109/CCA.2011.6044431