Type III effector proteins: doppelgangers of bacterial virulence

被引:39
作者
Desveaux, Darrell
Singer, Alex U.
Dangl, Jeffery L.
机构
[1] Univ Toronto, Toronto, ON M5S 3B2, Canada
[2] CH Best Inst, Toronto, ON M5G 1L6, Canada
[3] Univ N Carolina, Chapel Hill, NC 27599 USA
关键词
D O I
10.1016/j.pbi.2006.05.005
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Bacterial pathogens have co-evolved with their hosts in their ongoing quest for advantage in the resulting interaction. These intimate associations have resulted in remarkable adaptations of prokaryotic virulence proteins and their eukaryotic molecular targets. An important strategy used by microbial pathogens of animals to manipulate host cellular functions is structural mimicry of eukaryotic proteins. Recent evidence demonstrates that plant pathogens also use structural mimicry of host factors as a virulence strategy. Nearly all virulence proteins from phytopathogenic bacteria have eluded functional annotation on the basis of primary amino-acid sequence. Recent efforts to determine their three-dimensional structures are, however, revealing important clues about the mechanisms of bacterial virulence in plants.
引用
收藏
页码:376 / 382
页数:7
相关论文
共 48 条
[1]   Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cell death and immunity [J].
Abramovitch, RB ;
Janjusevic, R ;
Stebbins, CE ;
Martin, GB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (08) :2851-2856
[2]   Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death [J].
Abramovitch, RB ;
Kim, YJ ;
Chen, SR ;
Dickman, MB ;
Martin, GB .
EMBO JOURNAL, 2003, 22 (01) :60-69
[3]   Identification of a bacterial type III effector family with G protein mimicry functions [J].
Alto, NM ;
Shao, F ;
Lazar, CS ;
Brost, RL ;
Chua, G ;
Mattoo, S ;
McMahon, SA ;
Ghosh, P ;
Hughes, TR ;
Boone, C ;
Dixon, JE .
CELL, 2006, 124 (01) :133-145
[4]  
ASHFIELD T, 1995, GENETICS, V141, P1597
[5]   Convergent evolution of disease resistance gene specificity in two flowering plant families [J].
Ashfield, T ;
Ong, LE ;
Nobuta, K ;
Schneider, CM ;
Innes, RW .
PLANT CELL, 2004, 16 (02) :309-318
[6]   Genetic and molecular evidence that the Pseudomonas syringae type III effector protein AvrRpt2 is a cysteine protease [J].
Axtell, MJ ;
Chisholm, ST ;
Dahlbeck, D ;
Staskawicz, BJ .
MOLECULAR MICROBIOLOGY, 2003, 49 (06) :1537-1546
[7]   Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4 [J].
Axtell, MJ ;
Staskawicz, BJ .
CELL, 2003, 112 (03) :369-377
[8]   avrPto enhances growth and necrosis caused by Pseudomonas syringae pv. tomato in tomato lines lacking either Pto or Prf [J].
Chang, JH ;
Rathjen, JP ;
Bernal, AJ ;
Staskawicz, BJ ;
Michelmore, RW .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2000, 13 (05) :568-571
[9]   Wake of the flood: ascribing functions to the wave of type III effector proteins of phytopathogenic bacteria [J].
Chang, JH ;
Goel, AK ;
Grant, SR ;
Dangl, JL .
CURRENT OPINION IN MICROBIOLOGY, 2004, 7 (01) :11-18
[10]   Host-microbe interactions: Shaping the evolution of the plant immune response [J].
Chisholm, ST ;
Coaker, G ;
Day, B ;
Staskawicz, BJ .
CELL, 2006, 124 (04) :803-814