Regulation of glycogen synthase activity and phosphorylation by exercise

被引:44
作者
Nielsen, JN [1 ]
Wojtaszewski, JFP [1 ]
机构
[1] Univ Copenhagen, Muscle Res Ctr, Inst Exercise & Sport Sci, Copenhagen, Denmark
关键词
exercise; contraction; skeletal muscle; glycogen synthase; phosphorylation;
D O I
10.1079/PNS2004348
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Glycogen synthase (GS) catalyses the rate-limiting step of UDP-glucose incorporation into glycogen. Exercise is a potent regulator of GS activity, leading to activation of GS immediately after exercise promoting glycogen repletion by mechanisms independent of insulin. The incorporation of UDP-glucose is energy demanding, and during intense exercise GS is deactivated, diminishing energy utilization but also increasing the potential for glycogen breakdown. An apparent activation of GS is observed during moderate exercise, which could be considered as a potential waste of energy, although the cellular capacity for glycogen breakdown is considerably higher than that for glycogen synthesis. The understanding of this complex regulation of GS activity in response to exercise is just at its beginning. In the present review potential mechanisms by which exercise regulates GS activity are described, factors that may promote GS activation and factors that may deactivate GS are discussed, pointing to the view that GS activity during exercise is the result of the relative strength of these opposing factors.
引用
收藏
页码:233 / 237
页数:5
相关论文
共 29 条
[1]   The muscle-specific protein phosphatase PP1G/RGL(GM) is essential for activation of glycogen synthase by exercise [J].
Aschenbach, WG ;
Suzuki, Y ;
Breeden, K ;
Prats, C ;
Hirshman, MF ;
Dufresne, SD ;
Sakamoto, K ;
Vilardo, PG ;
Steele, M ;
Kim, JH ;
Jing, SL ;
Goodyear, LJ ;
DePaoli-Roach, AA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (43) :39959-39967
[2]   IN-VIVO REGULATION OF RAT MUSCLE GLYCOGEN RESYNTHESIS AFTER INTENSE EXERCISE [J].
BLOCH, G ;
CHASE, JR ;
MEYER, DB ;
AVISON, MJ ;
SHULMAN, GI ;
SHULMAN, RG .
AMERICAN JOURNAL OF PHYSIOLOGY, 1994, 266 (01) :E85-E91
[3]   The role of protein phosphatase-1 in insulin action [J].
Brady, MJ ;
Saltiel, AR .
RECENT PROGRESS IN HORMONE RESEARCH, VOL 56, 2001, 56 :157-173
[4]   THE SUBSTRATE AND SEQUENCE SPECIFICITY OF THE AMP-ACTIVATED PROTEIN-KINASE - PHOSPHORYLATION OF GLYCOGEN-SYNTHASE AND PHOSPHORYLASE-KINASE [J].
CARLING, D ;
HARDIE, DG .
BIOCHIMICA ET BIOPHYSICA ACTA, 1989, 1012 (01) :81-86
[5]   EFFECTS OF BETA-BLOCKADE ON GLYCOGEN-METABOLISM IN HUMAN-SUBJECTS DURING EXERCISE [J].
CHASIOTIS, D ;
BRANDT, R ;
HARRIS, RC ;
HULTMAN, E .
AMERICAN JOURNAL OF PHYSIOLOGY, 1983, 245 (02) :E166-E170
[6]   REGULATION OF GLYCOGENOLYSIS IN HUMAN-MUSCLE AT REST AND DURING EXERCISE [J].
CHASIOTIS, D ;
SAHLIN, K ;
HULTMAN, E .
JOURNAL OF APPLIED PHYSIOLOGY, 1982, 53 (03) :708-715
[7]   REGULATION OF GLYCOGENOLYSIS IN HUMAN-MUSCLE IN RESPONSE TO EPINEPHRINE INFUSION [J].
CHASIOTIS, D ;
SAHLIN, K ;
HULTMAN, E .
JOURNAL OF APPLIED PHYSIOLOGY, 1983, 54 (01) :45-50
[8]   Expression of the AMP-activated protein kinase β1 and β2 subunits in skeletal muscle [J].
Chen, ZP ;
Heierhorst, J ;
Mann, RJ ;
Mitchelhill, KI ;
Michell, BJ ;
Witters, LA ;
Lynch, GS ;
Kemp, BE ;
Stapleton, D .
FEBS LETTERS, 1999, 460 (02) :343-348
[9]  
Cohen P, 1978, Curr Top Cell Regul, V14, P117
[10]  
DANFORTH WH, 1965, J BIOL CHEM, V240, P588