Identifying novel transcripts and novel genes in the human genome by using novel SAGE tags

被引:116
作者
Chen, JJ
Sun, M
Lee, SG
Zhou, GL
Rowley, JD
Wang, S
机构
[1] Univ Chicago, Dept Med, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
关键词
D O I
10.1073/pnas.192436499
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The number of genes in the human genome is still a controversial issue. Whereas most of the genes in the human genome are said to have been physically or computationally identified, many short cDNA sequences identified as tags by use of serial analysis of gene expression (SAGE) do not match these genes. By performing experimental verification of more than 1,000 SAGE tags and analyzing 4,285,923 SAGE tags of human origin in the current SAGE database, we examined the nature of the unmatched SAGE tags. Our study shows that most of the unmatched SAGE tags are truly novel SAGE tags that originated from novel transcripts not yet identified in the human genome, including alternatively spliced transcripts from known genes and potential novel genes. Our study indicates that by using novel SAGE tags as probes, we should be able to identify efficiently many novel transcripts/novel genes in the human genome that are difficult to identify by conventional methods.
引用
收藏
页码:12257 / 12262
页数:6
相关论文
共 34 条
[1]   COMPLEMENTARY-DNA SEQUENCING - EXPRESSED SEQUENCE TAGS AND HUMAN GENOME PROJECT [J].
ADAMS, MD ;
KELLEY, JM ;
GOCAYNE, JD ;
DUBNICK, M ;
POLYMEROPOULOS, MH ;
XIAO, H ;
MERRIL, CR ;
WU, A ;
OLDE, B ;
MORENO, RF ;
KERLAVAGE, AR ;
MCCOMBIE, WR ;
VENTER, JC .
SCIENCE, 1991, 252 (5013) :1651-1656
[2]   Normalization and subtraction: Two approaches to facilitate gene discovery [J].
Bonaldo, MDF ;
Lennon, G ;
Soares, MB .
GENOME RESEARCH, 1996, 6 (09) :791-806
[3]   An anatomy of normal and malignant gene expression [J].
Boon, K ;
Osório, EC ;
Greenhut, SF ;
Schaefer, CF ;
Shoemaker, J ;
Polyak, K ;
Morin, PJ ;
Buetow, KH ;
Strausberg, RL ;
de Souza, SJ ;
Riggins, GJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (17) :11287-11292
[4]   Antisense-RNA regulation and RNA interference [J].
Brantl, S .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2002, 1575 (1-3) :15-25
[5]   High-throughput GLGI procedure for converting a large number of serial analysis of gene expression tag sequences into 3′ complementary DNAs [J].
Chen, JJ ;
Lee, SG ;
Zhou, GL ;
Wang, SM .
GENES CHROMOSOMES & CANCER, 2002, 33 (03) :252-261
[6]   Generation of longer cDNA fragments from serial analysis of gene expression tags for gene identification [J].
Chen, JJ ;
Rowley, JD ;
Wang, SM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) :349-353
[7]   Regulatory RNAs [J].
Erdmann, VA ;
Barciszewska, MZ ;
Hochberg, A ;
de Groot, N ;
Barciszewski, J .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2001, 58 (07) :960-977
[8]   Base-calling of automated sequencer traces using phred.: II.: Error probabilities [J].
Ewing, B ;
Green, P .
GENOME RESEARCH, 1998, 8 (03) :186-194
[9]   Base-calling of automated sequencer traces using phred.: I.: Accuracy assessment [J].
Ewing, B ;
Hillier, L ;
Wendl, MC ;
Green, P .
GENOME RESEARCH, 1998, 8 (03) :175-185
[10]   An assessment of gene prediction accuracy in large DNA sequences [J].
Guigó, R ;
Agarwal, P ;
Abril, JF ;
Burset, M ;
Fickett, JW .
GENOME RESEARCH, 2000, 10 (10) :1631-1642