Synergistic activation of ENaC by three membrane-bound channel-activating serine proteases (mCAP1, mCAP2, and mCAP3) and serum- and glucocorticoid-regulated kinase (Sgk1) in Xenopus oocytes

被引:188
作者
Vuagniaux, G [1 ]
Vallet, V [1 ]
Jaeger, NF [1 ]
Hummler, E [1 ]
Rossier, BC [1 ]
机构
[1] Univ Lausanne, Inst Pharmacol & Toxicol, CH-1015 Lausanne, Switzerland
关键词
epithelial sodium channel; amiloride; serum glucocorticoid-regulated kinase 1 (Sgk1); aldosterone; NEDD4;
D O I
10.1085/jgp.20028598
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Sodium balance is maintained by the precise regulation of the activity of the epithelial sodium channel (ENaC) in the kidney. We have recently reported an extracellular activation of ENaC-mediated sodium transport (I-Na) by a GPI-anchored serine protease (mouse channel-activating protein, mCAP1) that was isolated from a cortical collecting duct cell line derived from mouse kidney. In the present study, we have identified two additional membrane-bound serine proteases (mCAP2 and mCAP3) that are expressed in the same cell line. We show that each of these proteases is able to increase I-Na 6-10-fold in the Xenopus oocyte expression system. I-Na and the number (N) of channels expressed at the cell surface (measured by binding of a FLAG monoclonal I-125-radioiodinated antibody) were measured in the same oocyte. Using this assay, we show that mCAP1 increases I-Na 10-fold (P < 0.001) but N remained unchanged (P = 0.9), indicating that mCAP1 regulates ENaC activity by increasing its average open probability of the whole cell (wcP(o)). The serum- and glucocorticoid-regulated kinase (Sgk1) involved in the aldosterone-dependent signaling cascade enhances I-Na by 2.5-fold (P < 0.001) and N by 1.6-fold (P < 0.001), indicating a dual effect on N and wcP(o). Compared with Sgk1 alone, coexpression of Sgk1 with mCAP1 leads to a ninefold increase in I-Na (P < 0.001) and 1.3-fold in N (P < 0.02). Similar results were observed for mCAP2 and mCAP3. The synergism between CAPs and Sgk1 on I-Na, was always more than additive, indicating a true potentiation. The synergistic effect of the two activation pathways allows a large dynamic range for ENaC-mediated sodium regulation crucial for a tight control of sodium homeostasis.
引用
收藏
页码:191 / 201
页数:11
相关论文
共 40 条
[1]  
Adachi M, 2001, J AM SOC NEPHROL, V12, P1114, DOI 10.1681/ASN.V1261114
[2]  
Bens M, 1999, J AM SOC NEPHROL, V10, P923
[3]   Na+ transport in normal and CF human bronchial epithelial cells is inhibited by BAY 39-9437 [J].
Bridges, RJ ;
Newton, BB ;
Pilewski, JM ;
Devor, DC ;
Poll, CT ;
Hall, RL .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2001, 281 (01) :L16-L23
[4]   AMILORIDE-SENSITIVE EPITHELIAL NA+ CHANNEL IS MADE OF 3 HOMOLOGOUS SUBUNITS [J].
CANESSA, CM ;
SCHILD, L ;
BUELL, G ;
THORENS, B ;
GAUTSCHI, I ;
HORISBERGER, JD ;
ROSSIER, BC .
NATURE, 1994, 367 (6462) :463-467
[5]   Epithelial sodium channel regulated by aldosterone-induced protein sgk [J].
Chen, SY ;
Bhargava, A ;
Mastroberardino, L ;
Meijer, OC ;
Wang, J ;
Buse, P ;
Firestone, GL ;
Verrey, F ;
Pearce, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (05) :2514-2519
[6]   Protease modulation of the activity of the epithelial sodium channel expressed in Xenopus oocytes [J].
Chraïbi, A ;
Vallet, V ;
Firsov, D ;
Hess, SK ;
Horisberger, JD .
JOURNAL OF GENERAL PHYSIOLOGY, 1998, 111 (01) :127-138
[7]   Residue 225 determines the Na+-induced allosteric regulation of catalytic activity in serine proteases [J].
Dang, QD ;
DiCera, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (20) :10653-10656
[8]   The serum and glucocorticoid kinase sgk increases the abundance of epithelial sodium channels in the plasma membrane of Xenopus oocytes [J].
de la Rosa, DA ;
Zhang, P ;
Náray-Fejes-Tóth, A ;
Fejes-Tóth, G ;
Canessa, CM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (53) :37834-37839
[9]   Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na+ channel cell surface expression [J].
Debonneville, C ;
Flores, SY ;
Kamynina, E ;
Plant, PJ ;
Tauxe, C ;
Thomas, MA ;
Münster, C ;
Chraïbi, A ;
Pratt, JH ;
Horisberger, JD ;
Pearce, D ;
Loffing, J ;
Staub, O .
EMBO JOURNAL, 2001, 20 (24) :7052-7059
[10]   Regulation of the epithelial sodium channel by serine proteases in human airways [J].
Donaldson, SH ;
Hirsh, A ;
Li, DC ;
Holloway, G ;
Chao, J ;
Boucher, RC ;
Gabriel, SE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (10) :8338-8345