Kinetic theory of quantum transport at the nanoscale

被引:40
作者
Gebauer, R [1 ]
Car, R
机构
[1] Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy
[2] INFM, Democritos Natl Simulat Ctr, I-34013 Trieste, Italy
[3] Princeton Univ, Dept Chem, Princeton, NJ 08540 USA
[4] Princeton Univ, Princeton Inst Sci & Technol Mat, Princeton, NJ 08540 USA
来源
PHYSICAL REVIEW B | 2004年 / 70卷 / 12期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.70.125324
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a quantum-kinetic scheme for the calculation of non-equilibrium transport properties in nanoscale systems. The approach is based on a Liouville-master equation for a reduced density operator and represents a generalization of the well-known Boltzmann kinetic equation. The system, subject to an external electromotive force, is described using periodic boundary conditions. We demonstrate the feasibility of the approach by applying it to a double-barrier resonant tunneling structure.
引用
收藏
页码:125324 / 1
页数:5
相关论文
共 34 条
[1]  
[Anonymous], 1991, STAT PHYS
[2]  
BURKE K, UNPUB
[3]   JOSEPHSON BEHAVIOR IN SMALL NORMAL ONE-DIMENSIONAL RINGS [J].
BUTTIKER, M ;
IMRY, Y ;
LANDAUER, R .
PHYSICS LETTERS A, 1983, 96 (07) :365-367
[4]   COHERENT AND SEQUENTIAL TUNNELING IN SERIES BARRIERS [J].
BUTTIKER, M .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1988, 32 (01) :63-75
[5]  
Cohen-Tannoudji C., 1992, ATOM PHOTON INTERACT
[6]  
Dirac PAM, 1930, P CAMB PHILOS SOC, V26, P376
[7]   Master-equation approach to the study of electronic transport in small semiconductor devices [J].
Fischetti, MV .
PHYSICAL REVIEW B, 1999, 59 (07) :4901-4917
[8]   Theory of electron transport in small semiconductor devices using the Pauli master equation [J].
Fischetti, MV .
JOURNAL OF APPLIED PHYSICS, 1998, 83 (01) :270-291
[9]   BOUNDARY-CONDITIONS FOR OPEN QUANTUM-SYSTEMS DRIVEN FAR FROM EQUILIBRIUM [J].
FRENSLEY, WR .
REVIEWS OF MODERN PHYSICS, 1990, 62 (03) :745-791
[10]  
GEBAUER R, UNPUB