Equilibrium initial data for moving puncture simulations: the stationary 1+log slicing

被引:4
作者
Baumgarte, T. W. [1 ,2 ]
Etienne, Z. B. [2 ]
Liu, Y. T. [2 ]
Matera, K. [1 ]
Murchadha, N. O. [3 ]
Shapiro, S. L. [2 ,4 ,5 ]
Taniguchi, K. [2 ]
机构
[1] Bowdoin Coll, Dept Phys & Astron, Brunswick, ME 04011 USA
[2] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[3] Univ Coll, Dept Phys, Cork, Ireland
[4] Univ Illinois, Dept Astron, Urbana, IL 61801 USA
[5] Univ Illinois, NCSA, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
NUMERICAL RELATIVITY; BLACK-HOLE; GENERAL-RELATIVITY; VACUUM SPACETIMES; TRAPPED SURFACES;
D O I
10.1088/0264-9381/26/8/085007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss a 'stationary 1 + log' slicing condition for the construction of solutions to Einstein's constraint equations. For stationary spacetimes, these initial data give a stationary foliation when evolved with 'moving puncture' gauge conditions that are often used in black hole evolutions. The resulting slicing is time independent and agrees with the slicing generated by being dragged along a timelike Killing vector of the spacetime. When these initial data are evolved with moving puncture gauge conditions, numerical errors arising from coordinate evolution should be minimized. While these properties appear very promising, suggesting that this slicing condition should be an attractive alternative to, for example, maximal slicing, we demonstrate in this paper that solutions can be constructed only for a small class of problems. For binary black hole initial data, in particular, it is often assumed that there exists an approximate helical Killing vector that generates the binary's orbit. We show that 1 + log slices that are stationary with respect to such a helical Killing vector cannot be asymptotically flat, unless the spacetime possesses an additional axial Killing vector.
引用
收藏
页数:17
相关论文
共 41 条
[1]   Gauge conditions for long-term numerical black hole evolutions without excision -: art. no. 084023 [J].
Alcubierre, M ;
Brügmann, B ;
Diener, P ;
Koppitz, M ;
Pollney, D ;
Seidel, E ;
Takahashi, R .
PHYSICAL REVIEW D, 2003, 67 (08)
[2]   3D grazing collision of two black holes -: art. no. 271103 [J].
Alcubierre, M ;
Benger, W ;
Brügmann, B ;
Lanfermann, G ;
Nerger, L ;
Seidel, E ;
Takahashi, R .
PHYSICAL REVIEW LETTERS, 2001, 87 (27) :271103-271103
[3]  
Arnowitt R., 1962, Gravitation: An Introduction to Current Research, P227
[4]   Gravitational-wave extraction from an inspiraling configuration of merging black holes [J].
Baker, JG ;
Centrella, J ;
Choi, DI ;
Koppitz, M ;
van Meter, J .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[5]   Analytical representation of a black hole puncture solution [J].
Baumgarte, Thomas W. ;
Naculich, Stephen G. .
PHYSICAL REVIEW D, 2007, 75 (06)
[6]   Numerical relativity and compact binaries [J].
Baumgarte, TW ;
Shapiro, SL .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 376 (02) :41-131
[7]   Numerical integration of Einstein's field equations [J].
Baumgarte, TW ;
Shapiro, SL .
PHYSICAL REVIEW D, 1999, 59 (02)
[8]   Innermost stable circular orbit of binary black holes [J].
Baumgarte, TW .
PHYSICAL REVIEW D, 2000, 62 (02) :1-8
[9]   Late time behavior of the maximal slicing of the Schwarzschild black hole [J].
Beig, R ;
Murchadha, NO .
PHYSICAL REVIEW D, 1998, 57 (08) :4728-4737
[10]   TRAPPED SURFACES IN VACUUM SPACETIMES [J].
BEIG, R ;
MURCHADHA, NO .
CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (02) :419-430