Application of acoustic emission techniques and artificial neural networks to partial discharge classification

被引:12
作者
Tian, Y [1 ]
Lewin, PL [1 ]
Davies, AE [1 ]
Sutton, SJ [1 ]
Swingler, SG [1 ]
机构
[1] Univ Southampton, High Voltage Lab, Southampton SO17 1EJ, Hants, England
来源
CONFERENCE RECORD OF THE 2002 IEEE INTERNATIONAL SYMPOSIUM ON ELECTRICAL INSULATION | 2002年
关键词
D O I
10.1109/ELINSL.2002.995895
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Partial discharge (PD) detection, signal analysis and pattern identification, using acoustic emission measurements and the back-propagation (BP) artificial neural network (ANN) have been investigated. The measured signals were processed using three-dimensional patterns and short duration Fourier transforms (SDFT). Investigation indicates that using BP ANN with the SDFT components for classifying different PD patterns provides very good overall results.
引用
收藏
页码:119 / 123
页数:5
相关论文
共 5 条
[1]  
HUCKER T, 1993, IEE CONF PUBL, P74
[2]  
LEIJON M, 1993, CIGRE S DIAGN MAINT
[3]   PATTERN-RECOGNITION OF PARTIAL DISCHARGE IN XLPE CABLES USING A NEURAL NETWORK [J].
SUZUKI, H ;
ENDOH, T .
IEEE TRANSACTIONS ON ELECTRICAL INSULATION, 1992, 27 (03) :543-549
[4]  
Tian Y, 2000, IEE CONF PUBL, P503, DOI 10.1049/cp:20000560
[5]  
ZHU D, 1994, IEEE INT S EL INS PI