Weakly coupled bound states in quantum waveguides

被引:139
作者
Bulla, W
Gesztesy, F
Renger, W
Simon, B
机构
[1] UNIV MISSOURI, DEPT MATH, COLUMBIA, MO 65211 USA
[2] CALTECH, DIV PHYS MATH & ASTRON, PASADENA, CA 91125 USA
关键词
Dirichlet Laplacians; waveguides; ground states;
D O I
10.1090/S0002-9939-97-03726-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the eigenvalue spectrum of Dirichlet Laplacians which model quantum waveguides associated with tubular regions outside of a bounded domain. Intuitively, our principal new result in two dimensions asserts that any domain Omega obtained by adding an arbitrarily small ''bump'' to the tube Omega(0) = R x (0,1) (i.e., Omega (not equal)(superset of) Omega(0), Omega subset of R-2 open and connected, Omega = Omega(0) outside a bounded region) produces at least one positive eigenvalue below the essential spectrum [pi(2),infinity) of the Dirichlet Laplacian -Delta(Omega)(D). For \Omega\Omega(0)\ sufficiently small (\.\ abbreviating Lebesgue measure), we prove uniqueness of the ground state E-Omega of -Delta(Omega)(D) and derive the ''weak coupling'' result E-Omega = pi(2) - pi(4)\Omega\Omega(0)\(2) + O(\Omega\Omega(0)\3) using a Birman- Schwinger-type analysis. As a corollary of these results we obtain the following surprising fact: Starting from the tube Omega(0) with Dirichlet boundary conditions at delta Omega(0), replace the Dirichlet condition by a Neumann boundary condition on an arbitrarily small segment (a,b) x {1}, a < b, of delta Omega(0). If H(a,b) denotes the resulting Laplace operator in L-2(Omega(0)), then H(a, b) has a discrete eigenvalue in[pi(2)/4, pi(2)) no matter how small \b - a\ > 0 is.
引用
收藏
页码:1487 / 1495
页数:9
相关论文
共 14 条
[1]   LOWER BOUNDS TO BOUND-STATE ENERGIES IN BENT TUBES [J].
ASHBAUGH, MS ;
EXNER, P .
PHYSICS LETTERS A, 1990, 150 (3-4) :183-186
[2]   BOUND-STATES OF WEAKLY COUPLED LONG-RANGE ONE-DIMENSIONAL QUANTUM HAMILTONIANS [J].
BLANKENBECLER, R ;
GOLDBERGER, ML ;
SIMON, B .
ANNALS OF PHYSICS, 1977, 108 (01) :69-78
[3]   CURVATURE-INDUCED BOUND-STATES IN QUANTUM WAVE-GUIDES IN 2-DIMENSIONS AND 3-DIMENSIONS [J].
DUCLOS, P ;
EXNER, P .
REVIEWS IN MATHEMATICAL PHYSICS, 1995, 7 (01) :73-102
[4]   CURVATURE VS THICKNESS IN QUANTUM WAVE-GUIDES [J].
DUCLOS, P ;
EXNER, P .
CZECHOSLOVAK JOURNAL OF PHYSICS, 1991, 41 (11) :1009-1018
[5]   EXISTENCE THEOREMS FOR TRAPPED MODES [J].
EVANS, DV ;
LEVITIN, M ;
VASSILIEV, D .
JOURNAL OF FLUID MECHANICS, 1994, 261 :21-31
[6]   BOUND-STATES IN CURVED QUANTUM WAVE-GUIDES [J].
EXNER, P ;
SEBA, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (11) :2574-2580
[7]   BOUND-STATES IN QUANTUM WAVE-GUIDES OF A SLOWLY DECAYING CURVATURE [J].
EXNER, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (01) :23-28
[8]   ON EXISTENCE OF A BOUND-STATE IN AN L-SHAPED WAVE-GUIDE [J].
EXNER, P ;
SEBA, P ;
STOVICEK, P .
CZECHOSLOVAK JOURNAL OF PHYSICS, 1989, 39 (11) :1181-1191
[9]  
Kato T., 1976, PERTURBATION THEORY
[10]   COUPLING-CONSTANT THRESHOLDS IN NON-RELATIVISTIC QUANTUM-MECHANICS .1. SHORT-RANGE 2-BODY CASE [J].
KLAUS, M ;
SIMON, B .
ANNALS OF PHYSICS, 1980, 130 (02) :251-281