On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance

被引:1478
作者
Gao, Feng [1 ]
Masek, Jeff
Schwaller, Matt
Hall, Forrest
机构
[1] Earth Resources Technol Inc, Jessup, MD 20794 USA
[2] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2006年 / 44卷 / 08期
关键词
data fusion; image enhancement; image processing; Landsat; Moderate Resolution Imaging Spectroradiometer (MODIS); remote sensing; surface reflectance; THEMATIC MAPPER;
D O I
10.1109/TGRS.2006.872081
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The 16-day revisit cycle of Landsat has long limited its use for studying global biophysical processes, which evolve rapidly during the growing season. In cloudy areas of the Earth, the problem is compounded, and researchers are fortunate to get two to three clear images per year. At the same time, the coarse resolution of sensors such as the Advanced Very High Resolution Radiometer and Moderate Resolution Imaging Spectroradiometer (MODIS) limits the sensors' ability to quantify biophysical processes in heterogeneous landscapes. In this paper, the authors present a new spatial and temporal adaptive reflectance fusion model (STARFM) algorithm to blend Landsat and MODIS surface reflectance. Using this approach, high-frequency temporal information from MODIS and high-resolution spatial information from Landsat can be blended for applications that require high resolution in both time and space. The MODIS daily 500-m surface reflectance and the 16-day repeat cycle Landsat Enhanced Thematic Mapper Plus (ETM+) 30-m surface reflectance are used to produce a synthetic "daily" surface reflectance product at ETM+ spatial resolution. The authors present results both with simulated (model) data and actual Landsat/MODIS acquisitions. In general, the STARFM accurately predicts surface reflectance at an effective resolution close to that of the ETM+. However, the performance depends on the characteristic patch size of the landscape and degrades somewhat when used on extremely heterogeneous fine-grained landscapes.
引用
收藏
页码:2207 / 2218
页数:12
相关论文
共 9 条
[1]  
Loveland T.R., 1996, GAP ANAL LANDSCAPE A, P79
[2]   A Landsat surface reflectance dataset for North America, 1990-2000 [J].
Masek, JG ;
Vermote, EF ;
Saleous, NE ;
Wolfe, R ;
Hall, FG ;
Huemmrich, KF ;
Gao, F ;
Kutler, J ;
Lim, TK .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (01) :68-72
[3]   Multiresolution-based image fusion with additive wavelet decomposition [J].
Núñez, J ;
Otazu, X ;
Fors, O ;
Prades, A ;
Palà, V ;
Arbiol, R .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (03) :1204-1211
[4]   First operational BRDF, albedo nadir reflectance products from MODIS [J].
Schaaf, CB ;
Gao, F ;
Strahler, AH ;
Lucht, W ;
Li, XW ;
Tsang, T ;
Strugnell, NC ;
Zhang, XY ;
Jin, YF ;
Muller, JP ;
Lewis, P ;
Barnsley, M ;
Hobson, P ;
Disney, M ;
Roberts, G ;
Dunderdale, M ;
Doll, C ;
d'Entremont, RP ;
Hu, BX ;
Liang, SL ;
Privette, JL ;
Roy, D .
REMOTE SENSING OF ENVIRONMENT, 2002, 83 (1-2) :135-148
[5]  
SHETTIGARA VK, 1992, PHOTOGRAMM ENG REM S, V58, P561
[6]   GLOBAL LAND COVER CLASSIFICATION BY REMOTE-SENSING - PRESENT CAPABILITIES AND FUTURE POSSIBILITIES [J].
TOWNSHEND, J ;
JUSTICE, C ;
LI, W ;
GURNEY, C ;
MCMANUS, J .
REMOTE SENSING OF ENVIRONMENT, 1991, 35 (2-3) :243-255
[7]   Atmospheric correction of MODIS data in the visible to middle infrared: first results [J].
Vermote, EF ;
El Saleous, NZ ;
Justice, CO .
REMOTE SENSING OF ENVIRONMENT, 2002, 83 (1-2) :97-111
[8]  
Vogelmann JE, 2001, PHOTOGRAMM ENG REM S, V67, P650
[9]  
Yocky DA, 1996, PHOTOGRAMM ENG REM S, V62, P1067