Spatio-temporal accumulation of microRNAs is highly coordinated in developing plant tissues

被引:118
作者
Valoczi, Anna
Varallyay, Eva
Kauppinen, Sakari
Burgyan, Jozsef
Havelda, Zoltan
机构
[1] Agr Biotechnol Ctr, Inst Plant Biol, H-2001 Godollo, Hungary
[2] Univ Copenhagen, Inst Med Biochem & Genet, Wilhelm Johannsen Ctr Funct Genome Res, DK-2200 Copenhagen, Denmark
关键词
plant; miRNA; expression; in situ hybridization; LNA;
D O I
10.1111/j.1365-313X.2006.02766.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
MicroRNAs (miRNAs) are an abundant class of small, endogenous non-protein-coding RNAs, approximately 21 nucleotides in length, that modulate the expression of animal and plant target genes at the post-transcriptional level. Recent work has shown that miRNA-based gene regulation plays a crucial role in pathways involved in plant growth and development. However, knowledge about the timing and spatial regulation of plant miRNA expression is still limited. Here we used in situ analysis to demonstrate that miRNAs accumulate spatially and temporally in a highly restricted manner in Nicotiana benthamiana and Arabidopsis thaliana. The presence of the seven investigated miRNAs was characteristic of the developing organs, implying a role in cell-fate establishment, differentiation and cell-cycle progression. Spatial analyses revealed that six of the studied miRNAs were present in vascular bundles, suggesting that mobile miRNAs in the phloem could contribute to the coordination of organogenesis and development. The obvious absence of miR167 in vascular bundles represented an exception to this observation, implying an active process in regulating the presence of miRNAs in the vascular system. Taken together, our results imply that the spatially and temporally organized accumulation of miRNAs plays a pivotal role in fine-tuning of target gene expression in plant development.
引用
收藏
页码:140 / 151
页数:12
相关论文
共 45 条
[1]   Modulation of floral development by a gibberellin-regulated microRNA [J].
Achard, P ;
Herr, A ;
Baulcombe, DC ;
Harberd, NP .
DEVELOPMENT, 2004, 131 (14) :3357-3365
[2]   Computational prediction of miRNAs in Arabidopsis thaliana [J].
Adai, A ;
Johnson, C ;
Mlotshwa, S ;
Archer-Evans, S ;
Manocha, V ;
Vance, V ;
Sundaresan, V .
GENOME RESEARCH, 2005, 15 (01) :78-91
[3]   Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes [J].
Aukerman, MJ ;
Sakai, H .
PLANT CELL, 2003, 15 (11) :2730-2741
[4]   The early extra petals1 mutant uncovers a role for MicroRNA miR164c in regulating petal number in Arabidopsis [J].
Baker, CC ;
Sieber, P ;
Wellmer, F ;
Meyerowitz, EM .
CURRENT BIOLOGY, 2005, 15 (04) :303-315
[5]   RNA silencing in plants [J].
Baulcombe, D .
NATURE, 2004, 431 (7006) :356-363
[6]   Plant morphogenesis: long-distance coordination and local patterning [J].
Berleth, T ;
Sachs, T .
CURRENT OPINION IN PLANT BIOLOGY, 2001, 4 (01) :57-62
[7]   Molecular characterisation of the Arabidopsis SBP-box genes [J].
Cardon, G ;
Höhmann, S ;
Klein, J ;
Nettesheim, K ;
Saedler, H ;
Huijser, P .
GENE, 1999, 237 (01) :91-104
[8]   MicroRNA-binding viral protein interferes with Arabidopsis development [J].
Chellappan, P ;
Vanitharani, R ;
Fauquet, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (29) :10381-10386
[9]   A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development [J].
Chen, XM .
SCIENCE, 2004, 303 (5666) :2022-2025
[10]   MicroRNA regulation of gene expression in plants [J].
Dugas, DV ;
Bartel, B .
CURRENT OPINION IN PLANT BIOLOGY, 2004, 7 (05) :512-520