Principal manifolds and probabilistic subspaces for visual recognition

被引:166
作者
Moghaddam, B [1 ]
机构
[1] Mitsubishi Elect Res Lab, Cambridge, MA 02139 USA
关键词
subspace techniques; PCA; ICA; kernel PCA; probabilistic PCA; learning; density estimation; face recognition;
D O I
10.1109/TPAMI.2002.1008384
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate the use of linear and nonlinear principal manifolds for learning low-dimensional representations for visual recognition. Several leading techniques: Principal Component Analysis (PCA), Independent Component Analysis (ICA), and nonlinear Kernel PCA (KPCA) are examined and tested in a visual recognition experiment using 1,800+ facial images from the "FERET" database. We compare the recognition performance of nearest-neighbor matching with each principal manifold representation to that of a maximum a posteriori (MAP) matching rule using a Bayesian similarity measure derived from dual probabilistic subspaces. The experimental results demonstrate the simplicity, computational economy, and performance superiority of the Bayesian subspace method over principal manifold techniques for visual matching.
引用
收藏
页码:780 / 788
页数:9
相关论文
共 46 条
[1]  
[Anonymous], NCRG97010 AST U
[2]  
[Anonymous], ADVANCES IN NEURAL I
[3]   Independent factor analysis [J].
Attias, H .
NEURAL COMPUTATION, 1999, 11 (04) :803-851
[4]   Independent component representations for face recognition [J].
Bartlett, MS ;
Lades, HM ;
Sejnowski, TJ .
HUMAN VISION AND ELECTRONIC IMAGING III, 1998, 3299 :528-539
[5]   Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J].
Belhumeur, PN ;
Hespanha, JP ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) :711-720
[6]  
BISHOP CM, 1999, ADV NEURAL INFORMATI, P482
[7]  
BREGLER C, 1994, ADV NEURAL INFORMATI, V6, P43
[8]   FACE RECOGNITION - FEATURES VERSUS TEMPLATES [J].
BRUNELLI, R ;
POGGIO, T .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1993, 15 (10) :1042-1052
[9]  
BURL MC, 1994, P IEEE C COMP VIS PA
[10]   High-order contrasts for independent component analysis [J].
Cardoso, JF .
NEURAL COMPUTATION, 1999, 11 (01) :157-192