Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes

被引:345
作者
Thomas, Brian C.
Pedersen, Brent
Freeling, Michael [1 ]
机构
[1] Univ Calif Berkeley, Dept Plant & Microbial Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Coll Nat Resources, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA
关键词
D O I
10.1101/gr.4708406
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Approximately 90% of Arabidopsis' unique gene content is found in syntenic blocks that were formed during the most recent whole-genome duplication. Within these blocks, 28.6% of the genes have a retained pair; the remaining genes have been lost from one of the homeologs. We create a minimized genome by condensing local duplications to one gene, removing transposons, and including only genes within blocks defined by retained pairs. We use a moving average of retained and non-retained genes to find clusters of retention and then identify the types of genes that appear in clusters at frequencies above expectations. Significant clusters of retention exist for almost all chromosomal segments. Detailed alignments show that, for 85% of the genome, one homeolog was preferentially (1.6 x) targeted for fractionation. This homeolog fractionation bias suggests an epigenetic mechanism. We find that islands of retention contain "connected genes," those genes predicted-by the gene balance hypothesis-to be resistant to removal because the products they encode interact with other products in a dose-sensitive manner, creating a web of dependency. Gene families that are overrepresented in clusters include those encoding components of the proteasome/protein modification complexes, signal transduction machinery, ribosomes, and transcription factor complexes. Gene pair fractionation following polyploidy or segmental duplication leaves a genome enriched for "connected" genes. These clusters of duplicate genes may help explain the evolutionary origin of coregulated chromosomal regions and new functional modules.
引用
收藏
页码:934 / 946
页数:13
相关论文
共 56 条
[1]   Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid [J].
Adams, KL ;
Percifield, R ;
Wendel, JF .
GENETICS, 2004, 168 (04) :2217-2226
[2]   Matrix attachment regions and structural colinearity in the genomes of two grass species [J].
Avramova, Z ;
Tikhonov, A ;
Chen, MS ;
Bennetzen, JL .
NUCLEIC ACIDS RESEARCH, 1998, 26 (03) :761-767
[3]   Dosage balance in gene regulation: biological implications [J].
Birchler, JA ;
Riddle, NC ;
Auger, DL ;
Veitia, RA .
TRENDS IN GENETICS, 2005, 21 (04) :219-226
[4]   Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes [J].
Blanc, G ;
Wolfe, KH .
PLANT CELL, 2004, 16 (07) :1667-1678
[5]   Extensive duplication and reshuffling in the arabidopsis genome [J].
Blanc, G ;
Barakat, A ;
Guyot, R ;
Cooke, R ;
Delseny, I .
PLANT CELL, 2000, 12 (07) :1093-1101
[6]   A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome [J].
Blanc, G ;
Hokamp, K ;
Wolfe, KH .
GENOME RESEARCH, 2003, 13 (02) :137-144
[7]   Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events [J].
Bowers, JE ;
Chapman, BA ;
Rong, JK ;
Paterson, AH .
NATURE, 2003, 422 (6930) :433-438
[8]   Nonrandom divergence of gene expression following gene and genome duplications in the flowering plant Arabidopsis thaliana [J].
Casneuf, T ;
De Bodt, S ;
Raes, J ;
Maere, S ;
Van de Peer, Y .
GENOME BIOLOGY, 2006, 7 (02)
[9]   Buffering of crucial functions by paleologous duplicated genes may contribute cyclicality to angiosperm genome duplication [J].
Chapman, BA ;
Bowers, JE ;
Feltus, FA ;
Paterson, AH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (08) :2730-2735
[10]   A comparative phylogenetic approach for dating whole genome duplication events [J].
Chapman, BA ;
Bowers, JE ;
Schulze, SR ;
Paterson, AH .
BIOINFORMATICS, 2004, 20 (02) :180-185